Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eddy Pazmino is active.

Publication


Featured researches published by Eddy Pazmino.


Water Research | 2010

Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations.

William P. Johnson; Eddy Pazmino; Huilian Ma

In this paper we present direct observations of retention of colloids in granular porous media over a large size range (0.21-9.0 microm) and generalize the significance of attachment in grain to grain contacts and attachment on the open surface as a function of colloid:collector ratio. We examine reversibility of attachment via these mechanisms with respect to ionic strength reduction and fluid velocity increase. We relate these direct observations to existing literature, and in some cases offer alternative interpretations of mechanisms of retention drawn from indirect observations (e.g. via column effluent and retained concentrations).


Langmuir | 2011

Surface Heterogeneity on Hemispheres-in-Cell Model Yields All Experimentally-Observed Non-Straining Colloid Retention Mechanisms in Porous Media in the Presence of Energy Barriers

Huilian Ma; Eddy Pazmino; William P. Johnson

Many mechanisms of colloid retention in porous media under unfavorable conditions have been identified from experiments or theory, such as attachment at surface heterogeneities, wedging at grain to grain contacts, retention via secondary energy minimum association in zones of low flow drag, and straining in pore throats too small to pass. However, no previously published model is capable of representing all of these mechanisms of colloid retention. In this work, we demonstrate that incorporation of surface heterogeneity into our hemispheres-in-cell model yields all experimentally observed non-straining retention mechanisms in porous media under unfavorable conditions. We also demonstrate that the predominance of any given retention mechanism depends on the coupled colloid-collector-flow interactions that are governed by parameters such as the size and spatial frequency of heterogeneous attractive domains, colloid size, and solution ionic strength. The force/torque balance-simulated retention is shown to decrease gradually with decreasing solution ionic strength, in agreement with experimental observations. This gradual decrease stands in sharp contrast to predictions from mean field theory that does not account for discrete surface heterogeneity.


Langmuir | 2014

Power law size-distributed heterogeneity explains colloid retention on soda lime glass in the presence of energy barriers.

Eddy Pazmino; Jacob Trauscht; Brittany E. Dame; William P. Johnson

This article concerns reading the nanoscale heterogeneity thought responsible for colloid retention on surfaces in the presence of energy barriers (unfavorable attachment conditions). We back out this heterogeneity on glass surfaces by comparing mechanistic simulations incorporating discrete heterogeneity with colloid deposition experiments performed across a comprehensive set of experimental conditions. Original data is presented for attachment to soda lime glass for three colloid sizes (0.25, 1.1, and 1.95 μm microspheres) under a variety of ionic strengths and fluid velocities in an impinging jet system. A comparison of mechanistic particle trajectory simulations incorporating discrete surface heterogeneity represented by nanoscale zones of positive charge (heterodomains) indicates that a power law size distribution of heterodomains ranging in size from 120 to 60 nm in radius was able to explain the observed retention for all conditions examined. In contrast, uniform and random placement of single-sized heterodomains failed to capture experimentally observed colloid retention across the range of conditions examined.


Environmental Science & Technology | 2014

Release of colloids from primary minimum contact under unfavorable conditions by perturbations in ionic strength and flow rate.

Eddy Pazmino; Jacob Trauscht; William P. Johnson

Colloid release from surfaces in response to ionic strength and flow perturbations has been mechanistically simulated. However, these models do not address the mechanism by which colloid attachment occurs, at least in the presence of bulk colloid-collector repulsion (unfavorable conditions), which is a prevalent environmental condition. We test whether a mechanistic model that predicts colloid attachment under unfavorable conditions also predicts colloid release in response to reduced ionic strength (IS) and increased fluid velocity (conditions thought prevalent for mobilization of environmental colloids). The model trades in mean-field colloid-collector interaction for discrete representation of surface heterogeneity, which accounts for a combination of attractive and repulsive interactions simultaneously, and results in an attached colloid population (in primary minimum contact with the surface) having a distribution of strengths of attraction. The model moderates equilibrium separation distance by inclusion of steric interactions. By using the same model parameters to quantitatively predict attachment under unfavorable conditions, simulated release of colloids (for all three sizes) from primary minimum attachment in response to perturbations qualitatively matched experimental results, demonstrating that both attachment and detachment were mechanistically simulated.


Science of The Total Environment | 2013

Relationships of surface water, pore water, and sediment chemistry in wetlands adjacent to Great Salt Lake, Utah, and potential impacts on plant community health.

Gregory T. Carling; David C. Richards; Heidi M. Hoven; Theron Miller; Diego P. Fernandez; Abigail Rudd; Eddy Pazmino; William P. Johnson

We collected surface water, pore water, and sediment samples at five impounded wetlands adjacent to Great Salt Lake, Utah, during 2010 and 2011 in order to characterize pond chemistry and to compare chemistry with plant community health metrics. We also collected pore water and sediment samples along multiple transects at two sheet flow wetlands during 2011 to investigate a potential link between wetland chemistry and encroachment of invasive emergent plant species. Samples were analyzed for a suite of trace and major elements, nutrients, and relevant field parameters. The extensive sampling campaign provides a broad assessment of Great Salt Lake wetlands, including a range of conditions from reference to highly degraded. We used nonmetric multidimensional scaling (NMS) to characterize the wetland sites based on the multiple parameters measured in surface water, pore water, and sediment. NMS results showed that the impounded wetlands fall along a gradient of high salinity/low trace element concentrations to low salinity/high trace element concentrations, whereas the sheet flow wetlands have both elevated salinity and high trace element concentrations, reflecting either different sources of element loading or different biogeochemical/hydrological processes operating within the wetlands. Other geochemical distinctions were found among the wetlands, including Fe-reducing conditions at two sites and sulfate-reducing conditions at the remaining sites. Plant community health metrics in the impounded wetlands showed negative correlations with specific metal concentrations in sediment (THg, Cu, Zn, Cd, Sb, Pb, Ag, Tl), and negative correlations with nutrient concentrations in surface water (nitrite, phosphate, nitrate). In the sheet flow wetlands, invasive plant species were inversely correlated with pore water salinity. These results indicate that sediment and pore water chemistry play an important role in wetland plant community health, and that monitoring and remediation efforts should consider pore water and sediment chemistry in addition to surface water chemistry.


Water Air and Soil Pollution | 2013

Particulate and Dissolved Trace Element Concentrations in Three Southern Ecuador Rivers Impacted by Artisanal Gold Mining

Gregory T. Carling; Ximena Diaz; Marlon Ponce; Lester Perez; Luis Nasimba; Eddy Pazmino; Abigail Rudd; Srinivas Merugu; Diego P. Fernandez; Bruce K. Gale; William P. Johnson

Water and sediment samples were collected along river transects at three artisanal gold mining areas in southern Ecuador: Nambija, Portovelo-Zaruma, and Ponce Enriquez. Samples were analyzed for a suite of major and trace elements, including filtered/unfiltered water samples and stream flow measurements to determine dissolved/particulate loads. Results show that the Q. Calixto, Calera, and Siete rivers (corresponding to Nambija, Portovelo-Zaruma, and Ponce Enriquez mining areas, respectively) have substantial trace element contamination due to mining inputs. Dissolved concentrations were elevated at Calera and Siete relative to Q. Calixto, possibly reflecting the input of soluble cyano-metal complexes in mining zones where cyanidation is used in ore processing. A negative correlation was found between MeHg:THg ratios and pH, indicating an inverse relationship of mercury methylation with cyanidation (since cyanidation increases water pH). This was the first comprehensive study to examine an extensive suite of trace elements in both water and sediment at the three main gold mining areas of southern Ecuador, including dissolved and particulate loads, and the first study to report MeHg concentrations in the mercury-contaminated rivers.


Langmuir | 2015

Prediction of Nanoparticle and Colloid Attachment on Unfavorable Mineral Surfaces Using Representative Discrete Heterogeneity

Jacob Trauscht; Eddy Pazmino; William P. Johnson

Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing applicable semiempirical expressions in order to examine the strengths and weaknesses of the discrete heterogeneity approach and opportunities for improvement.


Environmental Science & Technology | 2011

Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.

Eddy Pazmino; Huilian Ma; William P. Johnson

The vast majority of colloid transport experiments use granular porous media with narrow size distribution to facilitate comparison with colloid filtration theory, which represents porous media with a single collector size. In this work we examine retention of colloids ranging in size from 0.21 to 9.1 μm in diameter, in columns packed with uniform and size-distributed borosilicate glass bead porous media with porosity ranging from 0.38 to 0.28. Conditions were favorable to attachment (absent a significant energy barrier). The goal was to determine the applicability of colloid filtration theory to colloid retention in these media. We also directly observed deposition at the pore scale in packed flow cells. The pore domain was characterized via high resolution computerized X-ray micro tomography (HRXMT). The flow field was examined using Lattice-Boltzmann flow simulation methods (LBM). The influence of preferential flow paths on colloid retention in the lowest porosity media was accounted for by correcting the fluid velocity. Straining in pore throats too small to pass was not a significant contributor to colloid retention despite colloid-to-collector size ratios up to 0.05. Mechanistic simulations via the Ma-Pedel-Fife-Johnson correlation equation (MPFJ) for colloid filtration predicted the experimentally observed trends in deposition with porosity when a number-based mean grain size was used.


Environmental Science & Technology | 2017

Contribution of Nano- to Microscale Roughness to Heterogeneity: Closing the Gap between Unfavorable and Favorable Colloid Attachment Conditions

Anna Rasmuson; Eddy Pazmino; Shoeleh Assemi; William P. Johnson

Surface roughness has been reported to both increase as well as decrease colloid retention. In order to better understand the boundaries within which roughness operates, attachment of a range of colloid sizes to glass with three levels of roughness was examined under both favorable (energy barrier absent) and unfavorable (energy barrier present) conditions in an impinging jet system. Smooth glass was found to provide the upper and lower bounds for attachment under favorable and unfavorable conditions, respectively. Surface roughness decreased, or even eliminated, the gap between favorable and unfavorable attachment and did so by two mechanisms: (1) under favorable conditions attachment decreased via increased hydrodynamic slip length and reduced attraction and (2) under unfavorable conditions attachment increased via reduced colloid-collector repulsion (reduced radius of curvature) and increased attraction (multiple points of contact, and possibly increased surface charge heterogeneity). Absence of a gap where these forces most strongly operate for smaller (<200 nm) and larger (>2 μm) colloids was observed and discussed. These observations elucidate the role of roughness in colloid attachment under both favorable and unfavorable conditions.


Environmental Science & Technology | 2011

Gravitational Settling Effects on Unit Cell Predictions of Colloidal Retention in Porous Media in the Absence of Energy Barriers

Huilian Ma; Eddy Pazmino; William P. Johnson

Laboratory column experiments for colloidal transport and retention are often carried out with flow direction oriented against gravity (up-flow) to minimize retention of trapped air. However, the models that underlie colloidal filtration theory (e.g., unit cell models such as the Happel sphere-in-cell and hemispheres-in-cell) typically set flow in the same direction as gravity (down-flow). We performed unit model simulations and experimental observations of retention of colloids with different size and density in porous media in the absence of energy barriers under both up-flow and down-flow conditions. Unit cell models predicted very different deposition (e.g., for large or dense colloids with gravity number N(G) > 0.01 at pore water velocity of 4 m/day) under down-flow versus up-flow conditions, which reflect underlying influences of gravity and flow on simulated colloid trajectories that resulted in very different distributions of attached colloids over the model surfaces. The Happel sphere-in-cell model showed greater sensitivity to flow orientation relative to gravity than the hemispheres-in-cell model. In contrast, experimental results were relatively insensitive to orientation of flow with respect to gravity, as a result of the variety of orientations of flow relative to gravity and to the porous media surface that exist in actual porous media. Notably, the down-flow simulations corresponded most closely to the experimental results (for near neutrally buoyant colloids); which justifies the common practice of comparing up-flow experiments to theoretical predictions developed for down-flow conditions.

Collaboration


Dive into the Eddy Pazmino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cory Angeroth

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge