Edgar D. Goluch
Northeastern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edgar D. Goluch.
Nano Letters | 2011
Marcel A. G. Zevenbergen; Pradyumna S. Singh; Edgar D. Goluch; Bernhard Wolfrum; Serge G. Lemay
We report the electrochemical detection of individual redox-active molecules as they freely diffuse in solution. Our approach is based on microfabricated nanofluidic devices, wherein repeated reduction and oxidation at two closely spaced electrodes yields a giant sensitivity gain. Single molecules entering and leaving the cavity are revealed as anticorrelated steps in the faradaic current measured simultaneously through the two electrodes. Cross-correlation analysis provides unequivocal evidence of single molecule sensitivity. We further find agreement with numerical simulations of the stochastic signals and analytical results for the distribution of residence times. This new detection capability can serve as a powerful alternative when fluorescent labeling is invasive or impossible. It further enables new fundamental (bio)electrochemical experiments, for example, localized detection of neurotransmitter release, studies of enzymes with redox-active products, and single-cell electrochemical assays. Finally, our lithography-based approach renders the devices suitable for integration in highly parallelized, all-electrical analysis systems.
Journal of the American Chemical Society | 2009
Marcel A. G. Zevenbergen; Bernhard Wolfrum; Edgar D. Goluch; Pradyumna S. Singh; Serge G. Lemay
We demonstrate that a 50 nm high solution-filled cavity bounded by two parallel electrodes in which electrochemically active molecules undergo rapid redox cycling can be used to determine very fast electron-transfer kinetics. We illustrate this capability by showing that the heterogeneous rate constant of Fc(MeOH)(2) sensitively depends on the type and concentration of the supporting electrolyte. These solid-state devices are mechanically robust and stable over time and therefore have the potential to become a widespread and versatile tool for electrochemical measurements.
Cytoskeleton | 2008
Jane James; Edgar D. Goluch; Huan Hu; Chang Liu; Milan Mrksich
This paper employs substrates that are patterned with shapes having well-defined geometric cues to characterize the influence of curvature on the polarization of highly metastatic B16F10 rat melanoma cells. Substrates were patterned using microcontact printing to define adhesive islands of defined shape and size on a background that otherwise prevents cell adhesion. Cells adherent to these surfaces responded to local curvature at the perimeter of the adhesive islands; convex features promoted the assembly of lamellipodia and concave features promoted the assembly of stress filaments. Cells adherent to rectangular shapes displayed a polarized cytoskeleton that increased with the aspect ratio of the shapes. Shapes that combined local geometric cues, by way of concave or convex edges, with aspect ratio were used to understand the additive effects of shape on polarization. The dependence of cell polarity on shape was determined in the presence of small molecules that alter actomyosin contractility and revealed a stronger dependence on contractility for shapes having straight edges, in contrast to those having curved edges. This study demonstrates that the cytoskeleton modulates cell polarity in response to multiple geometric cues in the extracellular environment.
Analytical Chemistry | 2009
Marcel A. G. Zevenbergen; Pradyumna S. Singh; Edgar D. Goluch; Bernhard Wolfrum; Serge G. Lemay
We introduce both theoretically and experimentally a new electrochemical technique based on measuring the fluctuations of the faradaic current during redox cycling. By analogy with fluorescence correlation spectroscopy (FCS), we refer to this technique as electrochemical correlation spectroscopy (ECS). We first derive an analytical expression of the power spectral density for the fluctuations in a thin-layer-cell geometry. We then show agreement with measurements using ferrocenedimethanol, Fc(MeOH)2, in water and in acetonitrile in microfabricated thin-layer cells with a approximately 70 nm electrode spacing. The fluctuation spectra provide detailed information about the adsorption dynamics of Fc(MeOH)2, which cause an apparent slowing of Brownian motion. We furthermore observe high-frequency fluctuations from which we estimate the rates of adsorption and desorption.
Biosensors and Bioelectronics | 2014
Thaddaeus A. Webster; Hunter J. Sismaet; Jared L. Conte; I-ping J. Chan; Edgar D. Goluch
The ability to quickly detect the presence of pathogenic bacteria in patient samples is of the outmost importance to expedient patient care. Here we report the direct, selective, and sensitive detection of the opportunistic pathogen Pseudomonas aeruginosa, spiked in human whole blood with sodium heparin, urine, sputum, and bronchial lavage samples using unmodified, disposable carbon electrode sensors that detect the presence of pyocyanin, a virulence factor that is unique to this species. Square wave voltammetry scans of biological fluids from healthy individuals spiked with P. aeruginosa showed a clear pyocyanin response within one day of culturing at 37°C. Scans of supernatants taken from cultures of P. aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermis, and Bacillus cereus taken over a span of three days in the potential range from -0.5 to 0 V vs. an Ag/AgCl reference showed no electrochemically detectable molecules with the exception of P. aeruginosa. The results indicate the potential to sensitively and selectively determine the presence of P. aeruginosa in human samples via the electrochemical detection of pyocyanin in less than 5 min, without any sample preparation or separation steps.
Applied Physics Letters | 2004
Kee Suk Ryu; Xuefeng Wang; Kashan Shaikh; David Bullen; Edgar D. Goluch; Jun Zou; Chang Liu; Chad A. Mirkin
This letter reports an architecture for a microfluidic chip that dresses (inks) multiple nanolithography tips in a high-density array in a parallel and multiplexed fashion. The microfluidic chip consists of multiple precision patterned thin-film poly(dimethylsiloxane) (PDMS) patches serving as porous inking pads. Inking chemicals are supplied from loading reservoirs to the inking pads through microfluidic channels. The gas-permeable thin PDMS membranes allow ink molecules to diffuse through while preventing bulk liquid from overflowing or evaporating. The inking chip provides high-density inking, easy loading of inks, and reduced evaporation losses. We present the fabrication process and inking of scanning probe contact printing probes and commercial nitride probes.
Biosensors and Bioelectronics | 2009
Edgar D. Goluch; Savka I. Stoeva; Jae Seung Lee; Kashan Shaikh; Chad A. Mirkin; Chang Liu
The biobarcode assay (BCA) is capable of achieving low detection limits and high specificity for both protein and DNA targets. The realization of a BCA in a microfluidic format presents unique opportunities and challenges. In this work, we describe a modified form of the BCA called the surface immobilized biobarcode assay (SI-BCA). The SI-BCA employs microchannel walls functionalized with antibodies that bind with the intended targets. Compared with the conventional BCA, it reduces the system complexity and results in shortened process time, which is attributed to significantly reduced diffusion times in the micro-scale channels. Raw serum samples, without any pretreatment, were evaluated with this technique. Prostate specific antigen in the samples was detected at concentrations ranging from 40 pM to 40 fM. The detection limit of the assay using buffer samples is 10 fM. The entire assay, from sample injection to final data analysis was completed in 80 min.
Applied Physics Letters | 2004
Edgar D. Goluch; Kashan Shaikh; Kee Ryu; Jack Chen; Jonathan Engel; Chang Liu
We present a technique for patterning thin-film metals (silver and gold) without the need for photolithography. The technique involves microfluidics and can be performed on planar or curved surfaces. Patterns of thin-film metal are fabricated by flowing electroless silver or gold plating solutions through predefined microchannels made of polydimethylsiloxane sealed against a surface of interest. We demonstrate metal resistors with 100-μm-wide traces fabricated on planar and curved surfaces. The surface profile, mechanical gauge factor, and temperature coefficient of resistance have been characterized. Application of the resistors as hot-wire flow sensors has also been demonstrated.
Lab on a Chip | 2008
Edgar D. Goluch; Andrew W. Shaw; Stephen G. Sligar; Chang Liu
We report a microfluidic method for precisely patterning lipid bilayers and a multiplexed assay to examine the interaction between the lipids and protein analytes. The lipids were packaged into nanoscale lipid bilayer particles known as Nanodiscs and delivered to surfaces using microfluidic channels. Two types of lipids were used in this study: biontinylated lipids and phosphoserine lipids. The deposition of biotinylated lipids on a glass surface was confirmed by attaching streptavidin coated quantum dots to the lipids, followed by fluorescent imaging. Using this multiplexed grid assay, we examined binding of annexin to phosphoserine lipids, and compared these results to similar analysis performed by surface plasmon resonance.
Biomicrofluidics | 2014
Pegah N. Abadian; Nil Tandogan; John J. Jamieson; Edgar D. Goluch
This paper describes the use of Surface Plasmon Resonance imaging (SPRi) as an emerging technique to study bacterial physiology in real-time without labels. The overwhelming majority of bacteria on earth exist in large multicellular communities known as biofilms. Biofilms are especially problematic because they facilitate the survival of pathogens, leading to chronic and recurring infections as well as costly industrial complications. Monitoring biofilm accumulation and removal is therefore critical in these and other applications. SPRi uniquely provides label-free, high-resolution images of biomass coverage on large channel surfaces up to 1 cm(2) in real time, which allow quantitative assessment of biofilm dynamics. The rapid imaging capabilities of this technique are particularly relevant for multicellular bacterial studies, as these cells can swim several body lengths per second and divide multiple times per hour. We present here the first application of SPRi to image Escherichia coli and Pseudomonas aeruginosa cells moving, attaching, and forming biofilms across a large surface. This is also the first time that biofilm removal has been visualized with SPRi, which has important implications for monitoring the biofouling and regeneration of fluidic systems. Initial images of the removal process show that the biofilm releases from the surface as a wave along the direction of the fluid flow.