Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edgar Ontsouka is active.

Publication


Featured researches published by Edgar Ontsouka.


Journal of Dairy Science | 2016

Invited review: Growth-promoting effects of colostrum in calves based on interaction with intestinal cell surface receptors and receptor-like transporters.

Edgar Ontsouka; Christiane Albrecht; Rupert Bruckmaier

The postnatal development and maturation of the gastrointestinal (GI) tract of neonatal calves is crucial for their survival. Major morphological and functional changes in the calfs GI tract initiated by colostrum bioactive substances promote the establishment of intestinal digestion and absorption of food. It is generally accepted that colostrum intake provokes the maturation of organs and systems in young calves, illustrating the significance of the cow-to-calf connection at birth. These postnatal adaptive changes of the GI tissues in neonatal calves are especially induced by the action of bioactive substances such as insulin-like growth factors, hormones, or cholesterol carriers abundantly present in colostrum. These substances interact with specific cell-surface receptors or receptor-like transporters expressed in the GI wall of neonatal calves to elicit their biological effects. Therefore, the abundance and activity of cell surface receptors and receptor-like transporters binding colostral bioactive substances are a key aspect determining the effects of the cow-to-calf connection at birth. The present review compiles the information describing the effects of colostrum feeding on selected serum metabolic and endocrine traits in neonatal calves. In this context, the current paper discusses specifically the consequences of colostrum feeding on the GI expression and activity of cell-receptors and receptor-like transporters binding growth hormone, insulin-like growth factors, insulin, or cholesterol acceptors in neonatal calves.


Molecular Human Reproduction | 2016

Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport

Xiao Huang; Michael Lüthi; Edgar Ontsouka; Sampada Kallol; Marc Baumann; Daniel Surbek; Christiane Albrecht

STUDY HYPOTHESIS Using optimized conditions, primary trophoblast cells isolated from human term placenta can develop a confluent monolayer in vitro, which morphologically and functionally resembles the microvilli structure found in vivo. STUDY FINDING We report the successful establishment of a confluent human primary trophoblast monolayer using pre-coated polycarbonate inserts, where the integrity and functionality was validated by cell morphology, biophysical features, cellular marker expression and secretion, and asymmetric glucose transport. WHAT IS KNOWN ALREADY Human trophoblast cells form the initial barrier between maternal and fetal blood to regulate materno-fetal exchange processes. Although the method for isolating pure human cytotrophoblast cells was developed almost 30 years ago, a functional in vitro model with primary trophoblasts forming a confluent monolayer is still lacking. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term cytotrophoblasts were isolated by enzymatic digestion and density gradient separation. The purity of the primary cells was evaluated by flow cytometry using the trophoblast-specific marker cytokeratin 7, and vimentin as an indicator for potentially contaminating cells. We screened different coating matrices for high cell viability to optimize the growth conditions for primary trophoblasts on polycarbonate inserts. During culture, cell confluency and polarity were monitored daily by determining transepithelial electrical resistance (TEER) and permeability properties of florescent dyes. The time course of syncytia-related gene expression and hCG secretion during syncytialization were assessed by quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. The morphology of cultured trophoblasts after 5 days was determined by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally, glucose transport studies were performed on the polarized trophoblasts in the same system. MAIN RESULTS AND THE ROLE OF CHANCE During 5-day culture, the highly pure trophoblasts were cultured on inserts coated with reconstituted basement membrane matrix . They exhibited a confluent polarized monolayer, with a modest TEER and a size-dependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ∼400-70 000 Da). The syncytialization progress was characterized by gradually increasing mRNA levels of fusogen genes and elevating hCG secretion. SEM analyses confirmed a confluent trophoblast layer with numerous microvilli, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein 1 (ZO-1) and the membrane proteins ATP-binding cassette transporter A1 (ABCA1) and glucose transporter 1 (GLUT1). Applying this model to study the bidirectional transport of a non-metabolizable glucose derivative indicated a carrier-mediated placental glucose transport mechanism with asymmetric kinetics. LIMITATIONS, REASONS FOR CAUTION The current study is only focused on primary trophoblast cells isolated from healthy placentas delivered at term. It remains to be evaluated whether this system can be extended to pathological trophoblasts isolated from diverse gestational diseases. WIDER IMPLICATIONS OF THE FINDINGS These findings confirmed the physiological properties of the newly developed human trophoblast barrier, which can be applied to study the exchange of endobiotics and xenobiotics between the maternal and fetal compartment, as well as intracellular metabolism, paracellular contributions and regulatory mechanisms influencing the vectorial transport of molecules. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by the Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland, and the Swiss National Science Foundation (grant no. 310030_149958, C.A.). All authors declare that their participation in the study did not involve factual or potential conflicts of interests.


PLOS ONE | 2013

Characteristics and Functional Relevance of Apolipoprotein-A1 and Cholesterol Binding in Mammary Gland Tissues and Epithelial Cells

Edgar Ontsouka; Xiao Huang; Bruno Stieger; Christiane Albrecht

Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of 125I-apoA-I and 3H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular 3H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell® plates. The amounts of isolated EPM and the maximal binding capacity of 125I-apoA-I to EPM differed depending on the MG’s physiological state, while the kinetics of 3H-cholesterol and 125I-apoA-I binding were similar. 3H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of 125I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of 125I-apoA-I ranged between 40–74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and 125I-apoA-I binding. The ABCA1 inhibitor Probucol displaced 125I-apoA-I binding to EPM and reduced 3H-cholesterol efflux in MeBo. Time-dependent 3H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell® plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of 3H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the importance of the apoA-I/ABCA1 pathway in MG cholesterol transport and suggest its role in influencing milk composition and directing cholesterol back into the bloodstream.


Journal of Receptors and Signal Transduction | 2007

Messenger RNA Levels and Binding Sites of Muscarinic Acetylcholine Receptors in Gastrointestinal Muscle Layers from Healthy Dairy Cows

Edgar Ontsouka; Rupert Bruckmaier; Adrian Steiner; J.W. Blum; Mireille Meylan

Acetylcholine interacts with muscarinic receptors (M) to mediate gastrointestinal (GI) smooth muscle contractions. We have compared mRNA levels and binding sites of M1to M5 in muscle tissues from fundus abomasi, pylorus, ileum, cecum, proximal loop of the ascending colon (PLAC), and external loop of the spiral colon (ELSC) of healthy dairy cows. The mRNA levels were measured by quantitative RT-PCR. The inhibition of [3H]-QNB (1-quinuclidinyl-[phenyl-4-3H]-benzilate) binding by M antagonists [atropine (M1 − 5), pirenzepine (M1), methoctramine (M2), 4-DAMP (M3), and tropicamide (M4)] was used to identify receptors at the functional level. Maximal binding (Bmax) was determined through saturation binding with atropine as a competitor. The mRNA levels of M1, M2, M3, and M5 represented 0.2, 48, 50, and 1.8%, respectively, of the total M population, whereas mRNA of M4 was undetectable. The mRNA levels of M2 and of M3 in the ileum were lower (P < 0.05) than in other GI locations, which were similar among each other. Atropine, pirenzepine, methoctramine, and 4-DAMP inhibited [3H]-QNB binding according to an either low- or high-affinity receptor pattern, whereas tropicamide had no effect on [3H]-QNB binding. The [3H]-QNB binding was dose-dependent and saturable. Bmax in fundus, pylorus, and PLAC was lower (P < 0.05) than in the ELSC, and in the pylorus lower (P < 0.05) than in the ileum. Bmax and mRNA levels were negatively correlated (r = -0.3; P < 0.05). In conclusion, densities of M are different among GI locations, suggesting variable importance of M for digestive functions along the GI tract.


Journal of Veterinary Internal Medicine | 2014

Cyclooxygenase‐2 and 5‐Lipoxygenase in Dogs with Chronic Enteropathies

S D Dumusc; Edgar Ontsouka; M Schnyder; Sonja Hartnack; Christiane Albrecht; Rupert Bruckmaier; Iwan A. Burgener

Background Cyclooxygenase‐2 (COX‐2) is a key enzyme in the synthesis of pro‐inflammatory prostaglandins and 5‐lipoxygenase (5‐LO) is the major source of leukotrienes. Their role in IBD has been demonstrated in humans and animal models, but not in dogs with chronic enteropathies (CCE). Hypothesis COX‐2 and 5‐LO are upregulated in dogs with CCE. Animals Fifteen healthy control dogs (HCD), 10 dogs with inflammatory bowel disease (IBD), and 15 dogs with food‐responsive diarrhea (FRD). Methods Prospective study. mRNA expression of COX‐2, 5‐LO, IL‐1b, IL‐4, IL‐6, TNF, IL‐10 and TFG‐β was evaluated by quantitative real‐time RT‐PCR in duodenal and colonic biopsies before and after treatment. Results COX‐2 expression in the colon was significantly higher in IBD and FRD before and after treatment (all P < .01). IL‐1b was higher in FRD in the duodenum after treatment (P = .021). TGF‐β expression was significantly higher in the duodenum of HCD compared to FRD/IBD before treatment (both P < .001) and IBD after treatment (P = .012). There were no significant differences among groups and within groups before and after treatment for IL‐4, IL‐6, TNF, and IL‐10. There was a significant correlation between COX‐2 and IL‐1b in duodenum and colon before treatment in FRD and IBD, whereas 5‐LO correlated better with IL‐6 and TNF. IL‐10 and TGF‐β usually were correlated. Conclusions and Clinical Importance COX‐2 is upregulated in IBD and FRD, whereas IL‐1b and TGF‐β seem to be important pro‐ and anti‐inflammatory cytokines, respectively. The use of dual COX/5‐LO inhibitors could be an interesting alternative in the treatment of CCE.


Veterinary Journal | 2010

Binding sites of muscarinic and adrenergic receptors in gastrointestinal tissues of dairy cows suffering from left displacement of the abomasum.

Edgar Ontsouka; M. Niederberger; Adrian Steiner; Rupert Bruckmaier; Mireille Meylan

Muscarinic acetylcholine (M) and adrenergic (AR) receptors mediate gastrointestinal motility. Using radioligand binding assays and real-time polymerase chain reaction, the densities of binding sites and mRNA levels of M₂, M₃, α₂(AD)- and β₂-AR were compared in muscle tissues from the abomasal fundus, pylorus, duodenum, caecum, and external loop of the spiral colon of eight cows with left displacement of abomasum (LDA), and of eight healthy cows. Specific binding of the [³H]-ligands to each of the four receptors was competitive and saturable. Binding sites of M₂ (all intestinal sites), M₃ (duodenum and caecum), and of α₂(AD)-AR (abomasal fundus) were lower (P < 0.05) in cows with LDA than in healthy cows. The coefficients of correlation between binding sites and mRNA transcripts of receptors were dissimilar in cows with LDA and healthy cows. The decrease in densities of M (intestine) and of α₂(AD)-AR (abomasum) receptors suggests their implication in the impairment of motility associated with or leading to LDA.


BMC Genomics | 2018

Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia

Xiao Huang; Pascale Anderle; Lu Hostettler; Marc Baumann; Daniel Surbek; Edgar Ontsouka; Christiane Albrecht

BackgroundGestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE.ResultsIn silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well-characterized IUGR/PE patients (IUGR, n = 8; PE, n = 5; PE+IUGR, n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases. Identified by both methods, three overlapping targets, SLC7A7, SLC38A5 (amino acid transporters), and ABCA1 (cholesterol transporter), were further investigated at the protein level by western blotting. Protein analyses in total placental tissue lysates and membrane fractions isolated from disease and control placentas indicated an altered functional activity of those three nutrient transporters in IUGR/PE.ConclusionsCombining bioinformatic analysis, molecular biological experiments and mathematical diagramming, this study has demonstrated systematic alterations of nutrient transporter expressions in IUGR/PE. Among 46 initially targeted transporters, three significantly regulated genes were further investigated based on the severity and the disease specificity for IUGR and PE. Confirmed by mRNA and protein expression, the amino acid transporters SLC7A7 and SLC38A5 showed marked differences between controls and IUGR/PE and were regulated by both diseases. In contrast, ABCA1 may play an exclusive role in the development of PE.


Veterinary Journal | 2009

Quantitative mRNA analysis of muscarinic acetylcholine receptors in the intestine of dairy cows with spontaneous caecal dilatation-dislocation.

Edgar Ontsouka; Adrian Steiner; Rupert Bruckmaier; J. W. Blum; Mireille Meylan

Muscarinic receptors mediate acetylcholine-induced muscular contractions. In this study, mRNA levels of muscarinic receptor subtypes 2 and 3 (M(2) and M(3)) in the ileum, caecum, proximal loop of the ascending colon (PLAC) and external loop of the spiral colon (ELSC) were determined by quantitative polymerase chain reaction in seven cows with caecal dilatation-dislocation (CDD) and seven healthy control cows. Levels of M(2) were significantly lower in the caecum, PLAC and ELSC and levels of M(3) were significantly lower in the ileum, caecum, PLAC and ELSC of cows with CDD compared to healthy cows (P<0.05). Down-regulation of M(3) may play a role in the pathogenesis of CDD.


Journal of Mammary Gland Biology and Neoplasia | 2014

Cholesterol Transport and Regulation in the Mammary Gland

Edgar Ontsouka; Christiane Albrecht


American Journal of Veterinary Research | 2006

Distribution of mRNA coding for 5-hydroxytryptamine receptor subtypes in the intestines of healthy dairy cows and dairy cows with cecal dilatation-dislocation

Ladina Engel; Barbara Kobel; Edgar Ontsouka; H.U. Graber; J. W. Blum; Adrian Steiner; Mireille Meylan

Collaboration


Dive into the Edgar Ontsouka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge