Edgard Morya
International Institute of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edgard Morya.
Scientific Reports | 2016
Ana Rita C. Donati; Solaiman Shokur; Edgard Morya; Debora S. F. Campos; Renan Cipriano Moioli; Claudia M. Gitti; Patricia B. Augusto; Sandra Tripodi; Cristhiane G. Pires; Gislaine A. Pereira; Fabricio Lima Brasil; Simone Gallo; Anthony A. Lin; Angelo K. Takigami; Maria Adelia Albano de Aratanha; Sanjay S. Joshi; Hannes Bleuler; Gordon Cheng; Alan Rudolph; Miguel A. L. Nicolelis
Brain-machine interfaces (BMIs) provide a new assistive strategy aimed at restoring mobility in severely paralyzed patients. Yet, no study in animals or in human subjects has indicated that long-term BMI training could induce any type of clinical recovery. Eight chronic (3–13 years) spinal cord injury (SCI) paraplegics were subjected to long-term training (12 months) with a multi-stage BMI-based gait neurorehabilitation paradigm aimed at restoring locomotion. This paradigm combined intense immersive virtual reality training, enriched visual-tactile feedback, and walking with two EEG-controlled robotic actuators, including a custom-designed lower limb exoskeleton capable of delivering tactile feedback to subjects. Following 12 months of training with this paradigm, all eight patients experienced neurological improvements in somatic sensation (pain localization, fine/crude touch, and proprioceptive sensing) in multiple dermatomes. Patients also regained voluntary motor control in key muscles below the SCI level, as measured by EMGs, resulting in marked improvement in their walking index. As a result, 50% of these patients were upgraded to an incomplete paraplegia classification. Neurological recovery was paralleled by the reemergence of lower limb motor imagery at cortical level. We hypothesize that this unprecedented neurological recovery results from both cortical and spinal cord plasticity triggered by long-term BMI usage.
PLOS ONE | 2011
Marco Aurelio M. Freire; Edgard Morya; Jean Faber; José Ronaldo dos Santos; Joanilson S. Guimarães; Nelson A. M. Lemos; Koichi Sameshima; Antonio Pereira; Sidarta Ribeiro; Miguel A. L. Nicolelis
Multielectrodes have been used with great success to simultaneously record the activity of neuronal populations in awake, behaving animals. In particular, there is great promise in the use of this technique to allow the control of neuroprosthetic devices by human patients. However, it is crucial to fully characterize the tissue response to the chronic implants in animal models ahead of the initiation of human clinical trials. Here we evaluated the effects of unilateral multielectrode implants on the motor cortex of rats weekly recorded for 1–6 months using several histological methods to assess metabolic markers, inflammatory response, immediate-early gene (IEG) expression, cytoskeletal integrity and apoptotic profiles. We also investigated the correlations between each of these features and firing rates, to estimate the impact of post-implant time on neuronal recordings. Overall, limited neuronal loss and glial activation were observed on the implanted sites. Reactivity to enzymatic metabolic markers and IEG expression were not significantly different between implanted and non-implanted hemispheres. Multielectrode recordings remained viable for up to 6 months after implantation, and firing rates correlated well to the histochemical and immunohistochemical markers. Altogether, our results indicate that chronic tungsten multielectrode implants do not substantially alter the histological and functional integrity of target sites in the cerebral cortex.
PLOS Genetics | 2014
Rico Rueedi; Mirko Ledda; Andrew W. Nicholls; Reza M. Salek; Pedro Marques-Vidal; Edgard Morya; Koichi Sameshima; Ivan Montoliu; Laeticia Da Silva; Sebastiano Collino; François-Pierre Martin; Serge Rezzi; Christoph Steinbeck; Dawn M. Waterworth; Gérard Waeber; Peter Vollenweider; Jacques S. Beckmann; Johannes le Coutre; Vincent Mooser; Sven Bergmann; Ulrich K. Genick; Zoltán Kutalik
Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on 1H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10−8) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10−44) and lysine (rs8101881, P = 1.2×10−33), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohns disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.
PLOS ONE | 2011
Ulrich K. Genick; Zoltán Kutalik; Mirko Ledda; Maria C. Souza Destito; Milena M. Souza; Cintia A. Cirillo; Nicolas Godinot; Nathalie Martin; Edgard Morya; Koichi Sameshima; Sven Bergmann; Johannes le Coutre
Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study.
Human Molecular Genetics | 2014
Mirko Ledda; Zoltán Kutalik; Maria C. Souza Destito; Milena M. Souza; Cintia A. Cirillo; Amabilene Zamboni; Nathalie Martin; Edgard Morya; Koichi Sameshima; Jacques S. Beckmann; Johannes le Coutre; Sven Bergmann; Ulrich K. Genick
Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88– 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10−13, r2 = 8.9%, β = −0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with—but is statistically distinct from—the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10−37, r2 = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.
Neurobiology of Learning and Memory | 2015
Julien Braga Calais; Elida B. Ojopi; Edgard Morya; Koichi Sameshima; Sidarta Ribeiro
Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory.
Scientific Reports | 2016
Solaiman Shokur; Simone Gallo; Renan Cipriano Moioli; Ana Rita C. Donati; Edgard Morya; Hannes Bleuler; Miguel A. L. Nicolelis
Spinal cord injuries disrupt bidirectional communication between the patient’s brain and body. Here, we demonstrate a new approach for reproducing lower limb somatosensory feedback in paraplegics by remapping missing leg/foot tactile sensations onto the skin of patients’ forearms. A portable haptic display was tested in eight patients in a setup where the lower limbs were simulated using immersive virtual reality (VR). For six out of eight patients, the haptic display induced the realistic illusion of walking on three different types of floor surfaces: beach sand, a paved street or grass. Additionally, patients experienced the movements of the virtual legs during the swing phase or the sensation of the foot rolling on the floor while walking. Relying solely on this tactile feedback, patients reported the position of the avatar leg during virtual walking. Crossmodal interference between vision of the virtual legs and tactile feedback revealed that patients assimilated the virtual lower limbs as if they were their own legs. We propose that the addition of tactile feedback to neuroprosthetic devices is essential to restore a full lower limb perceptual experience in spinal cord injury (SCI) patients, and will ultimately, lead to a higher rate of prosthetic acceptance/use and a better level of motor proficiency.
Scientific Reports | 2016
Erika Reime Kinjo; Guilherme Shigueto Vilar Higa; Bianca Araújo dos Santos; Erica de Sousa; Marcio Vinicius Damico; Lais Takata Walter; Edgard Morya; Angela C. Valle; Luiz R.G. Britto; Alexandre Hiroaki Kihara
Epileptogenesis in the temporal lobe elicits regulation of gene expression and protein translation, leading to reorganization of neuronal networks. In this process, miRNAs were described as being regulated in a cell-specific manner, although mechanistics of miRNAs activity are poorly understood. The specificity of miRNAs on their target genes depends on their intracellular concentration, reflecting the balance of biosynthesis and degradation. Herein, we confirmed that pilocarpine application promptly (<30 min) induces status epilepticus (SE) as revealed by changes in rat electrocorticogram particularly in fast-beta range (21–30 Hz). SE simultaneously upregulated XRN2 and downregulated PAPD4 gene expression in the hippocampus, two genes related to miRNA degradation and stability, respectively. Moreover, SE decreased the number of XRN2-positive cells in the hilus, while reduced the number of PAPD4-positive cells in CA1. XRN2 and PAPD4 levels did not change in calretinin- and CamKII-positive cells, although it was possible to determine that PAPD4, but not XRN2, was upregulated in parvalbumin-positive cells, revealing that SE induction unbalances the accumulation of these functional-opposed proteins in inhibitory interneurons that directly innervate distinct domains of pyramidal cells. Therefore, we were able to disclose a possible mechanism underlying the differential regulation of miRNAs in specific neurons during epileptogenesis.
PLOS ONE | 2014
Erika Reime Kinjo; Guilherme Shigueto Vilar Higa; Edgard Morya; Angela C. Valle; Alexandre Hiroaki Kihara; Luiz R.G. Britto
Gap junction (GJ) channels have been recognized as an important mechanism for synchronizing neuronal networks. Herein, we investigated the participation of GJ channels in the pilocarpine-induced status epilepticus (SE) by analyzing electrophysiological activity following the blockade of connexins (Cx)-mediated communication. In addition, we examined the regulation of gene expression, protein levels, phosphorylation profile and distribution of neuronal Cx36, Cx45 and glial Cx43 in the rat hippocampus during the acute and latent periods. Electrophysiological recordings revealed that the GJ blockade anticipates the occurrence of low voltage oscillations and promotes a marked reduction of power in all analyzed frequencies.Cx36 gene expression and protein levels remained stable in acute and latent periods, whereas upregulation of Cx45 gene expression and protein redistribution were detected in the latent period. We also observed upregulation of Cx43 mRNA levels followed by changes in the phosphorylation profile and protein accumulation. Taken together, our results indisputably revealed that GJ communication participates in the epileptiform activity induced by pilocarpine. Moreover, considering that specific Cxs undergo alterations through acute and latent periods, this study indicates that the control of GJ communication may represent a focus in reliable anti-epileptogenic strategies.
2014 IEEE 7th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS) | 2014
David J. Zielinski; Ryan P. McMahan; Solaiman Shokur; Edgard Morya; Regis Kopper
Everyday, people use numerous high-quality commercial software packages on desktop systems. Many times, these software packages are not able to access specialized virtual reality (VR) display and input devices, which can enhance interaction and visualization. To address this limitation, we have been using the well-known OpenGL intercept concept to insert middleware at runtime between the application and the graphics card. In this paper, we motivate the use of OpenGL intercept techniques and present three intercept-based techniques that enable closed-source applications to be used with VR systems. To demonstrate the usefulness of these intercept-based techniques, we describe two case studies. In the first case study, we enabled MotionBuilder, a commercial motion capture and animation software, to work with the Oculus Rift, a consumer-level head-mounted display (HMD). In the second case study, we enabled MATLAB, a commercial mathematics and simulation software, to run in the Duke immersive Virtual Environment (DiVE), six-sided CAVE-like system. In both cases, display and interaction are successfully handled by intercept-based techniques.