Edil Luis Santos
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edil Luis Santos.
Journal of Strength and Conditioning Research | 2012
Silvio Rodrigues Marques-Neto; Alex Souto Maior; Geraldo A. Maranhão Neto; Edil Luis Santos
Abstract Marques-Neto, SR, Maior, AS, Maranhão Neto, GA, and Santos, EL. Analysis of heart rate deflection points to predict the anaerobic threshold by a computerized method. J Strength Cond Res 26(7): 1967–1974, 2012—Many studies have used the heart rate deflection points (HRDPs) during incremental exercise tests, because of their strong correlation with the anaerobic threshold. The aim of this study was to evaluate the profile of the HRDPs identified by a computerized method and compare them with ventilatory and lactate thresholds. Twenty-four professional soccer players (age, 22 ± 5 years; body mass, 74 ± 7 kg; height 177 ± 7 cm) volunteered for the study. The subjects completed a Bruce-protocol incremental treadmill exercise test to volitional fatigue. Heart rate (HR) and alveolar gas exchange were recorded continuously at ≥1 Hz during exercise testing. Subsequently, the time course of the HR was fit by a computer algorithm, and a set of lines yielding the lowest pooled residual sum of squares was chosen as the best fit. This procedure defined 2 HRDPs (HRDP1 and HRDP2). The HR break points averaged 43.9 ± 5.9 and 89.7 ± 7.5% of the V[Combining Dot Above]O2peak. The HRDP1 showed a poor correlation with ventilatory threshold (VT; r = 0.50), but HRDP2 was highly correlated to the respiratory compensation (RC) point (r = 0.98). Neither HRDP1 nor HRDP2 was correlated with LT1 (at V[Combining Dot Above]O2 = 2.26 ± 0.72 L·min−1; r = 0.26) or LT2 (2.79 ± 0.59 L·min−1; r = 0.49), respectively. LT1 and LT2 also were not well correlated with VT (2.93 ± 0.68 L·min−1; r = 0.20) or RC (3.82 ± 0.60 L·min−1; r = 0.58), respectively. Although the HR deflection points were not correlated to LT, HRDP2 could be identified in all the subjects and was strongly correlated with RC, consistent with a relationship to cardiorespiratory fatigue and endurance performance.
Revista Brasileira De Medicina Do Esporte | 2007
Wollner Materko; Carlos E.B. Neves; Edil Luis Santos
The goal of the present study was to develop an equation for predicting the workload of one maximal repetition (1RM) in women and men, based exclusively on anthropometrical characteristics. Forty-four low-risk and experienced in strength training young subjects, being 22 male (23 ± 4 years, 76.6 ± 12.7 kg, 173.9 ± 5.5 cm, 11 ± 4.5 % of body fat) and 22 female (22 ± 4 years, 54 ± 6.0 kg, 161 ± 5.8 cm, 18 ± 2.2 % of body fat) volunteered for this study. All subjects were submitted to an anthropometrical evaluation followed by a 1RM familiarization test (shoulder press), which was repeated after 48h. The repeatability was tested using Wilcoxon Matched paired test. Finally, the 1RM workload was modeled in relation to the anthropometrical variables through multiple linear regression (forward stepwise) using as cutoff criteria for the independent variables Dr2 < 0.01. The models reliability was expressed by the Bland and Altman analysis. All tests assumed a = 0.05. No significant differences were recorded between the two tests, resulting 44.6 ± 13.2 kg and 12.2 ± 3.2kg, for male (MS) and female (FS) subjects respectively. The time of practice in strength training was also included in the models. The model resulted in 84% of explained variance and a standard error of 12% for the MS. On the other hand, for the FS the predictive capacity was weaker than for = the MS, resulting in 56% of the explained variance and a standard error of 20%. In conclusion, the obtained models showed acceptable reliability so that they can be currently used as a tool for predicting the 1RM workload.The goal of the present study was to develop an equation for predicting the workload of one maximal repetition (1RM) in women and men, based exclusively on anthropometrical characteristics. Forty-four low-risk and experienced in strength training young subjects, being 22 male (23 ± 4 years, 76.6 ± 12.7 kg, 173.9 ± 5.5 cm, 11 ± 4.5% of body fat) and 22 female (22 ± 4 years, 54 ± 6.0 kg, 161 ± 5.8 cm, 18 ± 2.2% of body fat) volunteered for this study. All subjects were submitted to an anthropometrical evaluation followed by a 1RM familiarization test (shoulder press), which was repeated after 48 h. The repeatability was tested using Wilcoxon Matched paired test. Finally, the 1RM workload was modeled in relation to the anthropometrical variables through multiple linear regression (forward stepwise) using as cutoff criteria for the independent variables ∆r 2 < 0.01. The models reliability was expressed by the Bland and Altman analysis. All tests assumed α = 0.05. No significant differences were recorded between the two tests, resulting 44.6 ± 13.2 kg and 12.2 ± 3.2 kg, for male (MS) and female (FS) subjects respectively. The time of practice in strength training was also included in the models. The model resulted in 84% of explained variance and a standard error of 12% for the MS. On the other hand, for the FS the predictive capacity was weaker than for = the MS, resulting in 56% of the explained variance and a standard error of 20%. In conclusion, the obtained models showed acceptable reliability so that they can be currently used as a tool for predicting the 1RM workload.
International Journal of Sports Medicine | 2010
Edil Luis Santos; Jefferson da Silva Novaes; Victor Machado Reis; Giannella-Neto A
The purpose of this work was to apply a simple method for acquisition of power output (PO) during the Wingate Anaerobic Test (WAnT) at a high sampling rate ( S(R)) and to compare the effect of lower S(R) on the measurements extracted from the PO. 26 male subjects underwent 2 WAnTs on a cycle ergometer. The reference PO was calculated at 30 Hz as a function of the linear velocity, the moment of inertia and the frictional load. The PO was sampled at 0.2, 0.5, 1, 2 and 5 Hz. Both the peak (16.03±2.22 W·kg (-1)) and mean PO (10.34±1.01 W·kg (-1)) presented lower relative values when the S(R) was lower. Peak PO was attenuated by 0.29-42.07% for decreasing sampling rates, resulting in different values for 0.2 and 1 Hz ( P<0.001). When the S(R) was 0.2 Hz, the time to peak was delayed by 53.81% ( P<0.001) and the fatigue index was attenuated by 22.12% ( P<0.001). In conclusion, due to the differences achieved here and the fact that the peak flywheel frequency is around 2.3 Hz, we strongly recommend that the PO be sampled at 5 Hz instead of 0.2 Hz in order to avoid biased errors and misunderstandings of the WAnT results.
Revista Brasileira De Medicina Do Esporte | 2007
Wollner Materko; Carlos E.B. Neves; Edil Luis Santos
The goal of the present study was to develop an equation for predicting the workload of one maximal repetition (1RM) in women and men, based exclusively on anthropometrical characteristics. Forty-four low-risk and experienced in strength training young subjects, being 22 male (23 ± 4 years, 76.6 ± 12.7 kg, 173.9 ± 5.5 cm, 11 ± 4.5 % of body fat) and 22 female (22 ± 4 years, 54 ± 6.0 kg, 161 ± 5.8 cm, 18 ± 2.2 % of body fat) volunteered for this study. All subjects were submitted to an anthropometrical evaluation followed by a 1RM familiarization test (shoulder press), which was repeated after 48h. The repeatability was tested using Wilcoxon Matched paired test. Finally, the 1RM workload was modeled in relation to the anthropometrical variables through multiple linear regression (forward stepwise) using as cutoff criteria for the independent variables Dr2 < 0.01. The models reliability was expressed by the Bland and Altman analysis. All tests assumed a = 0.05. No significant differences were recorded between the two tests, resulting 44.6 ± 13.2 kg and 12.2 ± 3.2kg, for male (MS) and female (FS) subjects respectively. The time of practice in strength training was also included in the models. The model resulted in 84% of explained variance and a standard error of 12% for the MS. On the other hand, for the FS the predictive capacity was weaker than for = the MS, resulting in 56% of the explained variance and a standard error of 20%. In conclusion, the obtained models showed acceptable reliability so that they can be currently used as a tool for predicting the 1RM workload.The goal of the present study was to develop an equation for predicting the workload of one maximal repetition (1RM) in women and men, based exclusively on anthropometrical characteristics. Forty-four low-risk and experienced in strength training young subjects, being 22 male (23 ± 4 years, 76.6 ± 12.7 kg, 173.9 ± 5.5 cm, 11 ± 4.5% of body fat) and 22 female (22 ± 4 years, 54 ± 6.0 kg, 161 ± 5.8 cm, 18 ± 2.2% of body fat) volunteered for this study. All subjects were submitted to an anthropometrical evaluation followed by a 1RM familiarization test (shoulder press), which was repeated after 48 h. The repeatability was tested using Wilcoxon Matched paired test. Finally, the 1RM workload was modeled in relation to the anthropometrical variables through multiple linear regression (forward stepwise) using as cutoff criteria for the independent variables ∆r 2 < 0.01. The models reliability was expressed by the Bland and Altman analysis. All tests assumed α = 0.05. No significant differences were recorded between the two tests, resulting 44.6 ± 13.2 kg and 12.2 ± 3.2 kg, for male (MS) and female (FS) subjects respectively. The time of practice in strength training was also included in the models. The model resulted in 84% of explained variance and a standard error of 12% for the MS. On the other hand, for the FS the predictive capacity was weaker than for = the MS, resulting in 56% of the explained variance and a standard error of 20%. In conclusion, the obtained models showed acceptable reliability so that they can be currently used as a tool for predicting the 1RM workload.
Revista Brasileira De Medicina Do Esporte | 2012
Nelson Pacobahyba; Rodrigo Gomes de Souza Vale; Sandro Legey Souza; Roberto Simão; Edil Luis Santos; Estélio Henrique Martin Dantas
The aim of this study is to evaluate the muscle strength and basal serum testosterone and urea levels in soccer athletes. Twenty-four soccer players in pre-competitive period had a blood sample collected to have testosterone and urea concentrations analyzed. Subsequently, 1RM tests were applied to the bench press and squat exercises. After data collection, the athletes were randomly divided in two groups submitted to: non-linear periodization program (G1) and non-periodized program (G2), both for 12 weeks. ANOVA for repeated measures showed increase in serum testosterone concentration in G1 (Δ = 3.70 ng/dl; p = 0.0001) and in G2 (Δ = 1.81 ng/dl; p = 0.035) and reduction in urea levels only in G1 (Δ = -3.08mg%; p = 0.0001). G1 presented higher levels of testosterone (Δ = 2.13 ng/dl; p = 0.009) and lower levels of urea (Δ = -1.36mg%; p = 0.026) in the post-test when compared to G2. 1RM tests did not show significant differences. The non-linear training in soccer players was more effective than the non-periodized training in promoting increase in serum testosterone levels and reduction in urea levels.
Journal of Human Kinetics | 2011
Roxana Macedo Brasil; Ana Cristina Lopes y Glória Barreto; Leandro Nogueira; Edil Luis Santos; Jefferson da Silva Novaes; Victor Machado Reis
Comparison of Physiological and Perceptual Responses Between Continuous and Intermittent Cycling The present study tested the hypothesis that the exercise protocol (continuous vs. intermittent) would affect the physiological response and the perception of effort during aquatic cycling. Each protocol was divided on four stages. Heart rate, arterial blood pressure, blood lactate concentration, central and peripheral rate of perceived exertion were collected in both protocols in aquatic cycling in 10 women (values are mean ± SD): age=32.8 ± 4.8 years; height=1.62 ± 0.05 cm; body mass=61.60 ± 5.19 kg; estimated body fat=27.13 ± 4.92%. Protocols were compared through two way ANOVA with Scheffés post-hoc test and the test of Mann- Whitney for rate of perceived exertion with α=0.05. No systematic and consistent differences in heart rate, arterial blood pressure, double product and blood lactate concentration were found between protocols. On the other hand, central rate of perceived exertion was significantly higher at stage four during continuous protocol compared with intermittent protocol (p=0.01), while the peripheral rate of perceived exertion presented higher values at stages three (p=0.02) and four (p=0.00) in the continuous protocol when compared to the results found in intermittent protocol. These findings suggest that although the aquatic cycling induces similar physiologic demands in both protocols, the rate of perceived exertion may vary according to the continuous vs. intermittent nature of the exercise.
Isokinetics and Exercise Science | 2009
Wollner Materko; Edil Luis Santos
The goal of the present study was to determine and validate a model for predicting one maximum repetition (1RM) based on a submaximal strength test and the arm circumference for bench press (BP). Thirty-five male experienced in strength training underwent an anthropometric evaluation, followed by an 1RM and a 10RM test for BP. The 1RM workload was modeled through the 10RM test and the arm circumference using multiple linear regression. The model resulted in 86% of explained variance and a 6.0% standard error of estimate of the measured 1RM for BP. The measured 1RM was 121.3 ± 18.8 kg and predicted 1RM was 120.6 ± 17.2 kg, with 0.6 ± 7.4 kg ( p< 0.01) difference between obtained and predicted 1RM. The obtained model showed an acceptable reliability, and further can be currently used as a tool for predicting the 1RM workload.
Biomedical Engineering Online | 2010
Antonio Giannella-Neto; Gabriel Motta Ribeiro; Edil Luis Santos; João Hn Soares; Marcelo V. Leão Nunes; Frederico C. Jandre
BackgroundThe positive end-expiratory pressure (PEEP) for the mechanical ventilation of small animals is frequently obtained with water seals or by using ventilators developed for human use. An alternative mechanism is the use of an on-off expiratory valve closing at the moment when the alveolar pressure is equal to the target PEEP. In this paper, a novel PEEP controller (PEEP-new) and the PEEP system of a commercial small-animal ventilator, both based on switching an on-off valve, are evaluated.MethodsThe proposed PEEP controller is a discrete integrator monitoring the error between the target PEEP and the airways opening pressure prior to the onset of an inspiratory cycle. In vitro as well as in vivo experiments with rats were carried out and the PEEP accuracy, settling time and under/overshoot were considered as a measure of performance.ResultsThe commercial PEEP controller did not pass the tests since it ignores the airways resistive pressure drop, resulting in a PEEP 5 cmH2O greater than the target in most conditions. The PEEP-new presented steady-state errors smaller than 0.5 cmH2O, with settling times below 10 s and under/overshoot smaller than 2 cmH2O.ConclusionThe PEEP-new presented acceptable performance, considering accuracy and temporal response. This novel PEEP generator may prove useful in many applications for small animal ventilators.
Revista Brasileira De Medicina Do Esporte | 2007
Wollner Materko; Carlos E.B. Neves; Edil Luis Santos
The goal of the present study was to develop an equation for predicting the workload of one maximal repetition (1RM) in women and men, based exclusively on anthropometrical characteristics. Forty-four low-risk and experienced in strength training young subjects, being 22 male (23 ± 4 years, 76.6 ± 12.7 kg, 173.9 ± 5.5 cm, 11 ± 4.5 % of body fat) and 22 female (22 ± 4 years, 54 ± 6.0 kg, 161 ± 5.8 cm, 18 ± 2.2 % of body fat) volunteered for this study. All subjects were submitted to an anthropometrical evaluation followed by a 1RM familiarization test (shoulder press), which was repeated after 48h. The repeatability was tested using Wilcoxon Matched paired test. Finally, the 1RM workload was modeled in relation to the anthropometrical variables through multiple linear regression (forward stepwise) using as cutoff criteria for the independent variables Dr2 < 0.01. The models reliability was expressed by the Bland and Altman analysis. All tests assumed a = 0.05. No significant differences were recorded between the two tests, resulting 44.6 ± 13.2 kg and 12.2 ± 3.2kg, for male (MS) and female (FS) subjects respectively. The time of practice in strength training was also included in the models. The model resulted in 84% of explained variance and a standard error of 12% for the MS. On the other hand, for the FS the predictive capacity was weaker than for = the MS, resulting in 56% of the explained variance and a standard error of 20%. In conclusion, the obtained models showed acceptable reliability so that they can be currently used as a tool for predicting the 1RM workload.The goal of the present study was to develop an equation for predicting the workload of one maximal repetition (1RM) in women and men, based exclusively on anthropometrical characteristics. Forty-four low-risk and experienced in strength training young subjects, being 22 male (23 ± 4 years, 76.6 ± 12.7 kg, 173.9 ± 5.5 cm, 11 ± 4.5% of body fat) and 22 female (22 ± 4 years, 54 ± 6.0 kg, 161 ± 5.8 cm, 18 ± 2.2% of body fat) volunteered for this study. All subjects were submitted to an anthropometrical evaluation followed by a 1RM familiarization test (shoulder press), which was repeated after 48 h. The repeatability was tested using Wilcoxon Matched paired test. Finally, the 1RM workload was modeled in relation to the anthropometrical variables through multiple linear regression (forward stepwise) using as cutoff criteria for the independent variables ∆r 2 < 0.01. The models reliability was expressed by the Bland and Altman analysis. All tests assumed α = 0.05. No significant differences were recorded between the two tests, resulting 44.6 ± 13.2 kg and 12.2 ± 3.2 kg, for male (MS) and female (FS) subjects respectively. The time of practice in strength training was also included in the models. The model resulted in 84% of explained variance and a standard error of 12% for the MS. On the other hand, for the FS the predictive capacity was weaker than for = the MS, resulting in 56% of the explained variance and a standard error of 20%. In conclusion, the obtained models showed acceptable reliability so that they can be currently used as a tool for predicting the 1RM workload.
European Journal of Applied Physiology | 2004
Edil Luis Santos; Antonio Giannella-Neto
Collaboration
Dive into the Edil Luis Santos's collaboration.
Ana Cristina Lopes y Glória Barreto
Federal University of Rio de Janeiro
View shared research outputs