Edin Golubovic
Sabancı University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edin Golubovic.
emerging technologies and factory automation | 2010
Islam S. M. Khalil; Edin Golubovic; Asif Sabanovic
This work attempts to achieve precise motion control using parallel robots with manufacturing tolerances and inaccuracies by migrating the measurements from their joint space to task space in order to decrease control systems sensitivity to any kinematical uncertainty rather than calibrating the parallel plant. The problem of dynamical model uncertainties and its effect on the derivation of the control law is also addressed in this work through disturbance estimation and compensation. Eventually, both task space measurement and disturbance estimation are combined to formulate a control framework that is unsensitive to either kinematical and dynamical system uncertainties.
international conference on mechatronics | 2013
Edin Golubovic; Tarik Uzunovic; Zhenishbek Zhakypov; Asif Sabanovic
This work focuses on the design of adaptive controller for high precision positioning purposes using PiezoLegs actuator. Actuator is driven with the set of periodical sine shaped voltages with known frequency, amplitude and phase shift between the phases. Clear relationships between the amplitude and phase shifts between the phases and actuator step size have been established. Based on these relationships adaptive controller has been designed. Controller is a linear, cascaded type of feedback controller that uses position feedback from an encoder. Based on the information of the absolute error controller performs the adaptive step size modulation by changing amplitude or phase shift of the driving voltages. Proposed algorithm is validated experimentally. Experimental results show satisfactory level performance, controller achieves fast settling time, no overshoot response and high accuracy of positioning with small steady state errors.
international conference on electrical and electronics engineering | 2013
Tarik Uzunovic; Edin Golubovic; Eray A. Baran; Asif Sabanovic
This paper describes configuration space control of a Delta robot with a neural network based kinematics. Mathematical model of the kinematics for parallel Delta robot used for manipulation purposes in microfactory was validated, and experiments showed that this model is not describing “real” kinematics properly. Therefore a new solution for kinematics mapping had to be investigated. Solution was found in neural network utilization, and it was used to model robots inverse kinematics. It showed significantly better mapping between task space coordinates and configuration (joint) space coordinates than the mathematical model, for the workspace of interest. Consequently positioning accuracy improvement is expected. Neural network is then used as a part of the control system. Applied control strategy was configuration space acceleration control with disturbance observer.
IEEE-ASME Transactions on Mechatronics | 2015
Tarik Uzunovic; Edin Golubovic; Asif Sabanovic
This paper offers a new approach for specifying the waveforms of driving voltages for a Piezo LEGS motor. A novel idea of coordinate transformation to define the waveforms of driving voltages, based on the motor static model, is presented. This transformation defines driving voltages according to the desired motion of the motor legs in the x- and y-directions. The approach allows a user to first define force acting on the motor rod in the y-direction and define the rods x-direction trajectory profile. Waveforms of the driving voltages are subsequently defined to meet these requirements. The proposed approach also enables the possibility of defining the desired step shape for the motor and, according to that definition, producing driving voltages. Based on the given coordinate transformation, a simple method for Piezo LEGS motor control, identified as virtual time control, is presented. This method results in overshoot-free high precision positioning.
Automatika: Journal for Control, Measurement, Electronics, Computing and Communications | 2015
Esref Emre Ozsoy; Edin Golubovic; Asif Sabanovic; Metin Gokasan; Seta Bogosyan
This paper presents a novel current control methodology for grid connected doubly-fed induction generator (DFIG) based wind energy conversion systems. Controller is based on a proportional controller with additional first order low pass filter disturbance observer which estimates the parameter dependent nonlinear feed-forward terms. The results in simulations and experimental test bed obviously demonstrate that decoupled control of active and reactive power is achieved without the necessity of additional machine parameter.
Automatika | 2013
Edin Golubovic; Eray A. Baran; Asif Sabanovic
This paper discusses the trajectory generation algorithm, contour error construction method and finally the contour controller design. In the trajectory generation algorithm combination of elliptical Fourier descriptors (EFD) and time based spline approximation (TBSA) is used to generate position, velocity and acceleration references. Contour error is constructed using transformation of trajectory tracking errors. Transformation is computationally efficient and requires only reference velocity information. Contour controller is designed using sliding mode control. Experiments are performed on planar linear motion stage and significant contour error reduction is observed.
Automatika: Journal for Control, Measurement, Electronics, Computing and Communications | 2013
Eray A. Baran; Edin Golubovic; Asif Sabanovic
This paper presents a novel functional observer for motion control systems to provide higher accuracy and less noise in comparison to existing observers. The observer uses the input current and position information along with the nominal parameters of the plant and can observe the velocity, acceleration and disturbance information of the system. The novelty of the observer is based on its functional structure that can intrinsically estimate and compensate the un-measured inputs (like disturbance acting on the system) using the measured input current. The experimental results of the proposed estimator verifies its success in estimating the velocity, acceleration and disturbance with better precision than other second order observers.
international symposium on industrial electronics | 2010
Eray A. Baran; Edin Golubovic; Asif Sabanovic
This paper presents a novel functional observer which can observe the velocity, acceleration and disturbance information of a motion control system with higher accuracy and less noise in comparison to classical observers. The observer uses the input current and position information and the nominal parameters of the plant. The novelty of the observer is based on its functional structure that can intrinsically estimate and compensate the un-measured inputs (like disturbance acting on the system) using the measured input current. The experimental results of the proposed estimator verifies its success in estimating the velocity, acceleration and disturbance with better precision than classical observers.
international workshop on advanced motion control | 2012
Edin Golubovic; Islam S. M. Khalil; Ahmet Ozcan Nergiz; Eray A. Baran; Asif Sabanovic
The production process of miniature devices and microsystems requires the utilization of non-conventional micromachining techniques. In the past few decades laser micromachining has became micro-manufacturing technique of choice for many industrial and research applications. This paper discusses the design of motion control system for a laser micromachining workstation with particulars about automatic focusing and control of work platform used in the workstation. The automatic focusing is solved in a sliding mode optimization framework and preview controller is used to control the motion platform. Experimental results of both motion control and actual laser micromachining are presented.
international workshop on advanced motion control | 2014
Tarik Uzunovic; Edin Golubovic; Asif Sabanovic
This paper describes FPGA based control system for a piezoelectric motor, commercially available Piezo LEGS motor. Driving voltages waveforms are defined as a combination of linear functions. This definition provides possibility for easy implementation on very simple hardware. Linear functions parameters allow forming of the driving voltages according to desired trajectory of motors legs. Considering that FPGA technology offers many advantages over the classical microprocessor based systems, it is used as control system implementation hardware. Realized control system can be very easily expanded to control multiple motors, if hardware resources are big enough. Also modularity is provided, making the future application very simple. In the paper control system structure is described in detail along with a very simple control algorithm for Piezo LEGS motor positioning control. Experimental results are given to validate designed control system. They showed satisfying control performance, responses with no overshoot and expected steady state error.