Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edina Csaszar is active.

Publication


Featured researches published by Edina Csaszar.


Plant Journal | 2010

The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis.

Norbert Mehlmer; Bernhard Wurzinger; Simon Stael; Daniela Hofmann-Rodrigues; Edina Csaszar; Barbara Pfister; Roman G. Bayer; Markus Teige

Plants use different signalling pathways to respond to external stimuli. Intracellular signalling via calcium-dependent protein kinases (CDPKs) or mitogen-activated protein kinases (MAPKs) present two major pathways that are widely used to react to a changing environment. Both CDPK and MAPK pathways are known to be involved in the signalling of abiotic and biotic stresses in animal, yeast and plant cells. Here, we show the essential function of the CDPK CPK3 (At4g23650) for salt stress acclimation in Arabidopsis thaliana, and test crosstalk between CPK3 and the major salt-stress activated MAPKs MPK4 and MPK6 in the salt stress response. CPK3 kinase activity was induced by salt and other stresses after transient overexpression in Arabidopsis protoplasts, but endogenous CPK3 appeared to be constitutively active in roots and leaves in a strictly Ca(2+) -dependent manner. cpk3 mutants show a salt-sensitive phenotype comparable with mutants in MAPK pathways. In contrast to animal cells, where crosstalk between Ca(2+) and MAPK signalling is well established, CPK3 seems to act independently of those pathways. Salt-induced transcriptional induction of known salt stress-regulated and MAPK-dependent marker genes was not altered, whereas post-translational protein phosphorylation patterns from roots of wild type and cpk3 plants revealed clear differences. A significant portion of CPK3 was found to be associated with the plasma membrane and the vacuole, both depending on its N-terminal myristoylation. An initial proteomic study led to the identification of 28 potential CPK3 targets, predominantly membrane-associated proteins.


Cell | 2009

Meiotic Chromosome Homology Search Involves Modifications of the Nuclear Envelope Protein Matefin/SUN-1

Alexandra Penkner; Alexandra Fridkin; Jiradet Gloggnitzer; Antoine Baudrimont; Thomas Machacek; Alexander Woglar; Edina Csaszar; Pawel Pasierbek; Gustav Ammerer; Yosef Gruenbaum; Verena Jantsch

Genome haploidization during meiosis depends on recognition and association of parental homologous chromosomes. The C. elegans SUN/KASH domain proteins Matefin/SUN-1 and ZYG-12 have a conserved role in this process. They bridge the nuclear envelope, connecting the cytoplasm and the nucleoplasm to transmit forces that allow chromosome movement and homolog pairing and prevent nonhomologous synapsis. Here, we show that Matefin/SUN-1 forms rapidly moving aggregates at putative chromosomal attachment sites in the meiotic transition zone (TZ). We analyzed requirements for aggregate formation and identified multiple phosphotarget residues in the nucleoplasmic domain of Matefin/SUN-1. These CHK-2 dependent phosphorylations occur in leptotene/zygotene, diminish during pachytene and are involved in pairing. Mimicking phosphorylation causes an extended TZ and univalents at diakinesis. Our data suggest that the properties of the nuclear envelope are altered during the time window when homologs are sorted and Matefin/SUN-1 aggregates form, thereby controling the movement, homologous pairing and interhomolog recombination of chromosomes.


Journal of Proteome Research | 2008

Site-Specific Phosphorylation Profiling of Arabidopsis Proteins by Mass Spectrometry and Peptide Chip Analysis

Sergio de la Fuente van Bentem; Dorothea Anrather; Ilse Dohnal; Elisabeth Roitinger; Edina Csaszar; Jos Joore; Joshua Buijnink; Alessandro Carreri; Celine Forzani; Zdravko J. Lorković; Andrea Barta; David Lecourieux; Andreas Verhounig; Claudia Jonak; Heribert Hirt

An estimated one-third of all proteins in higher eukaryotes are regulated by phosphorylation by protein kinases (PKs). Although plant genomes encode more than 1000 PKs, the substrates of only a small fraction of these kinases are known. By mass spectrometry of peptides from cytoplasmic- and nuclear-enriched fractions, we determined 303 in vivo phosphorylation sites in Arabidopsis proteins. Among 21 different PKs, 12 were phosphorylated in their activation loops, suggesting that they were in their active state. Immunoblotting and mutational analysis confirmed a tyrosine phosphorylation site in the activation loop of a GSK3/shaggy-like kinase. Analysis of phosphorylation motifs in the substrates suggested links between several of these PKs and many target sites. To perform quantitative phosphorylation analysis, peptide arrays were generated with peptides corresponding to in vivo phosphorylation sites. These peptide chips were used for kinome profiling of subcellular fractions as well as H 2O 2-treated Arabidopsis cells. Different peptide phosphorylation profiles indicated the presence of overlapping but distinct PK activities in cytosolic and nuclear compartments. Among different H 2O 2-induced PK targets, a peptide of the serine/arginine-rich (SR) splicing factor SCL30 was most strongly affected. SRPK4 (SR protein-specific kinase 4) and MAPKs (mitogen-activated PKs) were found to phosphorylate this peptide, as well as full-length SCL30. However, whereas SRPK4 was constitutively active, MAPKs were activated by H 2O 2. These results suggest that SCL30 is targeted by different PKs. Together, our data demonstrate that a combination of mass spectrometry with peptide chip phosphorylation profiling has a great potential to unravel phosphoproteome dynamics and to identify PK substrates.


Journal of Mass Spectrometry | 2009

On the inter‐instrument and inter‐laboratory transferability of a tandem mass spectral reference library: 1. Results of an Austrian multicenter study

Herbert Oberacher; Marion Pavlic; Kathrin Libiseller; Birthe Schubert; Michael Sulyok; Rainer Schuhmacher; Edina Csaszar; Harald Köfeler

The inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library originally built on a quadrupole-quadrupole-time-of-flight instrument was examined. The library consisted of 3759 MS/MS spectra collected from 402 reference compounds applying several different collision-energy values for fragmentation. In the course of the multicenter study, 22 test compounds were sent to three different laboratories, where 418 tandem mass spectra were acquired using four different instruments from two manufacturers. The study covered the following types of tandem mass spectrometers: quadrupole-quadrupole-time-of-flight, quadrupole-quadrupole-linear ion trap, quadrupole-quadrupole-quadrupole, and linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer. In each participating laboratory, optimized instrumental parameters were gathered solely from routinely applied workflows. No standardization procedure was applied to increase the inter-instrument comparability of MS/MS spectra. The acquired tandem mass spectra were matched against the established reference library using a sophisticated matching algorithm, which is presented in detail in a companion paper. Correct answers, meaning that the correct compound was retrieved as top hit, were obtained in 98.1% of cases. For the remaining 1.9% of spectra, the correct compound was matched at second rank. The observed high percentage of correct assignments clearly suggests that the developed mass spectral library search approach is to a large extent platform independent.


Journal of Mass Spectrometry | 2009

On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. Optimization and characterization of the search algorithm

Herbert Oberacher; Marion Pavlic; Kathrin Libiseller; Birthe Schubert; Michael Sulyok; Rainer Schuhmacher; Edina Csaszar; Harald Köfeler

A sophisticated matching algorithm developed for highly efficient identity search within tandem mass spectral libraries is presented. For the optimization of the search procedure a collection of 410 tandem mass spectra corresponding to 22 compounds was used. The spectra were acquired in three different laboratories on four different instruments. The following types of tandem mass spectrometric instruments were used: quadrupole-quadrupole-time-of-flight (QqTOF), quadrupole-quadrupole-linear ion trap (QqLIT), quadrupole-quadrupole-quadrupole (QqQ), and linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer (LIT-FTICR). The obtained spectra were matched to an established MS/MS-spectral library that contained 3759 MS/MS-spectra corresponding to 402 different reference compounds. All 22 test compounds were part of the library. A dynamic intensity cut-off, the search for neutral losses, and optimization of the formula used to calculate the match probability were shown to significantly enhance the performance of the presented library search approach. With the aid of these features the average number of correct assignments was increased to 98%. For statistical evaluation of the match reliability the set of fragment ion spectra was extended with 300 spectra corresponding to 100 compounds not included in the reference library. Performance was checked with the aid of receiver operating characteristic (ROC) curves. Using the magnitude of the match probability as well as the precursor ion mass as benchmarks to rate the obtained top hit, overall correct classification of a compound being included or not included in the mass spectrometric library, was obtained in more than 95% of cases clearly indicating a high predictive accuracy of the established matching procedure.


Molecular Plant | 2013

Salt Stress Triggers Phosphorylation of the Arabidopsis Vacuolar K+ Channel TPK1 by Calcium-Dependent Protein Kinases (CDPKs)

Andreas Latz; Norbert Mehlmer; Simone Zapf; Thomas D. Mueller; Bernhard Wurzinger; Barbara Pfister; Edina Csaszar; Rainer Hedrich; Markus Teige; Dirk Becker

14-3-3 proteins play an important role in the regulation of many cellular processes. The Arabidopsis vacuolar two-pore K(+) channel 1 (TPK1) interacts with the 14-3-3 protein GRF6 (GF14-λ). Upon phosphorylation of the putative binding motif in the N-terminus of TPK1, GRF6 binds to TPK1 and activates the potassium channel. In order to gain a deeper understanding of this 14-3-3-mediated signal transduction, we set out to identify the respective kinases, which regulate the phosphorylation status of the 14-3-3 binding motif in TPK1. Here, we report that the calcium-dependent protein kinases (CDPKs) can phosphorylate and thereby activate the 14-3-3 binding motif in TPK1. Focusing on the stress-activated kinase CPK3, we visualized direct and specific interaction of TPK1 with the kinase at the tonoplast in vivo. In line with its proposed role in K(+) homeostasis, TPK1 phosphorylation was found to be induced by salt stress in planta, and both cpk3 and tpk1 mutants displayed salt-sensitive phenotypes. Molecular modeling of the TPK1-CPK3 interaction domain provided mechanistic insights into TPK1 stress-regulated phosphorylation responses and pinpointed two arginine residues in the N-terminal 14-3-3 binding motif in TPK1 critical for kinase interaction. Taken together, our studies provide evidence for an essential role of the vacuolar potassium channel TPK1 in salt-stress adaptation as a target of calcium-regulated stress signaling pathways involving Ca(2+), Ca(2+)-dependent kinases, and 14-3-3 proteins.


Neurochemical Research | 2004

Reduction of Hippocampal Collapsin Response Mediated Protein-2 in Patients with Mesial Temporal Lobe Epilepsy

Thomas Czech; Jae-Won Yang; Edina Csaszar; Joachim Kappler; Christoph Baumgartner; Gert Lubec

Although the syndrome of mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis has been elaborated in recent years, pathogenesis and pathomechanisms are still elusive. Performing protein hunting in hippocampus of patients with MTLE we detected derangement of collapsin response mediated protein-2 (CRMP-2). Hippocampal tissue from controls and MTLEs was taken and two-dimensional gel electrophoresis with subsequent MALDI-MS-characterisation was applied. The proteomic approach identified 13 spots unambiguously assigned to CRMP-2. Three spots at molecular weight 55 kDa showed a significant decrease in MTLE and other 3 spots at 65 kDa showed deranged in MTLE. Immunoblotting revealed two bands at 65 and 55 kDa in the control group whereas the 55 kDa band was extremely low expressed in MTLE. CRMP-2 is required to induce axonal outgrowth and maintaining neuronal polarity in hippocampal neurons and the significant decrease of this protein may represent or underlie impaired neuronal plasticity, neurodegeneration, wiring of the brain in MTLE and may explain abnormal migration. Therefore, the decrease of CRMP-2 may well contribute to the understanding of the still unclear pathomechanisms involved in MTLE.


Nature Protocols | 2009

Gel-based mass spectrometric analysis of a strongly hydrophobic GABAA-receptor subunit containing four transmembrane domains

Sung Ung Kang; Karoline Fuchs; Werner Sieghart; Arnold Pollak; Edina Csaszar; Gert Lubec

The analysis of highly hydrophobic proteins is still an analytical challenge. Using a recombinant gamma-aminobutyric acid A (GABAA)-receptor subunit as a model protein, we developed a gel-based proteomic approach for high MS/MS-peptide sequence coverage identification. Protein samples were separated by multi-dimensional gel electrophoresis and the three protein spots representing the GABAA-receptor subunit α-1 from the last electrophoretic step were used for in-gel digestion with trypsin, chymotrypsin and subtilisin, followed by subsequent mass-spectrometric identification by nano-ESI-LC-MS/MS Qstar XL (quadrupole time-of-flight (qQTOF)) and linear ion trap (LIT) LTQ XL identification. This protocol allows the unambiguous identification of the GABAA-receptor α-1 subunit protein with 100% sequence coverage, thus covering all four hydrophobic transmembrane domains. This protocol differs from other methods in the selection of enzymes, digestion conditions and use of the two mass spectrometry principles. The protocol takes ∼10 d to complete and may represent a step forward in the complex analysis of other membrane or hydrophobic proteins.


Proteomics | 2011

Mining the soluble chloroplast proteome by affinity chromatography

Roman G. Bayer; Simon Stael; Edina Csaszar; Markus Teige

Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO2, they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low‐abundant proteins. Therefore, we developed a two‐step strategy for the enrichment of low‐abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose‐1,5‐bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP‐ or metal‐binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF‐hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions.


Proteomics | 2008

Enhanced detection and identification of multiply phosphorylated peptides using TiO2 enrichment in combination with MALDI TOF/TOF MS

Andreas Schmidt; Edina Csaszar; Gustav Ammerer; Karl Mechtler

The analysis of PTMs such as phosphorylation has become an important field in MS because they can directly indicate protein states and interactions. Whereas the characterization of singly and doubly phosphorylated peptides has almost become routine, identifying phosphorylation events at multiple residues within a small region of a protein is still problematic. The identification of multiple modifications can be further hampered by low sequence information due to multiple neutral losses from phosphorylated side chains. Here we present a strategy for the analysis of complex phosphopeptides that combines peptide enrichment by titanium dioxide, separation by RP separation on monolithic columns and MS using high energy HE‐CAD in a MALDI TOF/TOF analyser. Using synthetic phosphopeptides our approach is compared to multistage activation (MSA) MS/MS and the recently described electron transfer dissociation (ETD) method using an ESI‐LTQ mass spectrometer.

Collaboration


Dive into the Edina Csaszar's collaboration.

Top Co-Authors

Avatar

Gert Lubec

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Roitinger

Research Institute of Molecular Pathology

View shared research outputs
Top Co-Authors

Avatar

Markus Teige

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Peter Chiba

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnold Pollak

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorothea Anrather

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge