Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edita Aksamitiene is active.

Publication


Featured researches published by Edita Aksamitiene.


Biochemical Society Transactions | 2012

Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance

Edita Aksamitiene; Anatoly Kiyatkin; Boris N. Kholodenko

In the present paper, we describe multiple levels of cross-talk between the PI3K (phosphoinositide 3-kinase)/Akt and Ras/MAPK (mitogen-activated protein kinase) signalling pathways. Experimental data and computer simulations demonstrate that cross-talk is context-dependent and that both pathways can activate or inhibit each other. Positive influence of the PI3K pathway on the MAPK pathway is most effective at sufficiently low doses of growth factors, whereas negative influence of the MAPK pathway on the PI3K pathway is mostly pronounced at high doses of growth factors. Pathway cross-talk endows a cell with emerging capabilities for processing and decoding signals from multiple receptors activated by different combinations of extracellular cues.


Molecular Systems Biology | 2009

Systems-level interactions between insulin-EGF networks amplify mitogenic signaling.

Nikolay M. Borisov; Edita Aksamitiene; Anatoly Kiyatkin; Stefan Legewie; Jan Berkhout; Thomas Maiwald; Nikolai P. Kaimachnikov; Jens Timmer; Jan B. Hoek; Boris N. Kholodenko

Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal‐regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, and phosphatase SHP2, convert insulin‐induced increase in the phosphatidylinositol‐3,4,5‐triphosphate (PIP3) concentration into enhanced Ras/ERK activity. The model predicts and experiments confirm that insulin‐induced amplification of mitogenic signaling is abolished by disrupting PIP3‐mediated positive feedback via GAB1 and IRS. We demonstrate that GAB1 behaves as a non‐linear amplifier of mitogenic responses and insulin endows EGF signaling with robustness to GAB1 suppression. Our results show the feasibility of using computational models to identify key target combinations and predict complex cellular responses to a mixture of external cues.


Journal of Biological Chemistry | 2006

Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops.

Anatoly Kiyatkin; Edita Aksamitiene; Nick I. Markevich; Nikolay M. Borisov; Jan B. Hoek; Boris N. Kholodenko

Grb2-associated binder 1 (GAB1) is a scaffold protein involved in numerous interactions that propagate signaling by growth factor and cytokine receptors. Here we explore in silico and validate in vivo the role of GAB1 in the control of mitogenic (Ras/MAPK) and survival (phosphatidylinositol 3-kinase (PI3K)/Akt) signaling stimulated by epidermal growth factor (EGF). We built a comprehensive mechanistic model that allows for reliable predictions of temporal patterns of cellular responses to EGF under diverse perturbations, including different EGF doses, GAB1 suppression, expression of mutant proteins, and pharmacological inhibitors. We show that the temporal dynamics of GAB1 tyrosine phosphorylation is significantly controlled by positive GAB1-PI3K feedback and negative MAPK-GAB1 feedback. Our experimental and computational results demonstrate that the essential function of GAB1 is to enhance PI3K/Akt activation and extend the duration of Ras/MAPK signaling. By amplifying positive interactions between survival and mitogenic pathways, GAB1 plays the critical role in cell proliferation and tumorigenesis.


Cellular Signalling | 2011

Prolactin-stimulated activation of ERK1/2 mitogen-activated protein kinases is controlled by PI3-kinase/Rac/PAK signaling pathway in breast cancer cells

Edita Aksamitiene; Sirisha Achanta; Walter Kolch; Boris N. Kholodenko; Jan B. Hoek; Anatoly Kiyatkin

There is strong evidence that deregulation of prolactin (PRL) signaling contributes to pathogenesis and chemoresistance of breast cancer. Therefore, understanding cross-talk between distinct signal transduction pathways triggered by activation of the prolactin receptor (PRL-R), is essential for elucidating the pathogenesis of metastatic breast cancer. In this study, we applied a sequential inhibitory analysis of various signaling intermediates to examine the hierarchy of protein interactions within the PRL signaling network and to evaluate the relative contributions of multiple signaling branches downstream of PRL-R to the activation of the extracellular signal-regulated kinases ERK1 and ERK2 in T47D and MCF-7 human breast cancer cells. Quantitative measurements of the phosphorylation/activation patterns of proteins showed that PRL simultaneously activated Src family kinases (SFKs) and the JAK/STAT, phosphoinositide-3 (PI3)-kinase/Akt and MAPK signaling pathways. The specific blockade or siRNA-mediated suppression of SFK/FAK, JAK2/STAT5, PI3-kinase/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) the PI3-kinase/Akt pathway is required for activation of the MAPK/ERK signaling cascade upon PRL stimulation; (2) PI3-kinase-mediated activation of the c-Raf-MEK1/2-ERK1/2 cascade occurs independent of signaling dowstream of STATs, Akt and PKC, but requires JAK2, SFKs and FAK activities; (3) activated PRL-R mainly utilizes the PI3-kinase-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. By interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells.


Cellular Signalling | 2010

PI3K/Akt-sensitive MEK-independent compensatory circuit of ERK activation in ER-positive PI3K-mutant T47D breast cancer cells.

Edita Aksamitiene; Boris N. Kholodenko; Walter Kolch; Jan B. Hoek; Anatoly Kiyatkin

We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent. MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation. Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.


BMC Systems Biology | 2012

Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise

Marc R. Birtwistle; Jens Rauch; Anatoly Kiyatkin; Edita Aksamitiene; Maciej Dobrzyński; Jan B. Hoek; Walter Kolch; Babatunde A. Ogunnaike; Boris N. Kholodenko

BackgroundCell-to-cell variability in protein expression can be large, and its propagation through signaling networks affects biological outcomes. Here, we apply deterministic and probabilistic models and biochemical measurements to study how network topologies and cell-to-cell protein abundance variations interact to shape signaling responses.ResultsWe observe bimodal distributions of extracellular signal-regulated kinase (ERK) responses to epidermal growth factor (EGF) stimulation, which are generally thought to indicate bistable or ultrasensitive signaling behavior in single cells. Surprisingly, we find that a simple MAPK/ERK-cascade model with negative feedback that displays graded, analog ERK responses at a single cell level can explain the experimentally observed bimodality at the cell population level. Model analysis suggests that a conversion of graded input–output responses in single cells to digital responses at the population level is caused by a broad distribution of ERK pathway activation thresholds brought about by cell-to-cell variability in protein expression.ConclusionsOur results show that bimodal signaling response distributions do not necessarily imply digital (ultrasensitive or bistable) single cell signaling, and the interplay between protein expression noise and network topologies can bring about digital population responses from analog single cell dose responses. Thus, cells can retain the benefits of robustness arising from negative feedback, while simultaneously generating population-level on/off responses that are thought to be critical for regulating cell fate decisions.


Methods of Molecular Biology | 2009

Multistrip Western blotting to increase quantitative data output

Anatoly Kiyatkin; Edita Aksamitiene

The qualitative and quantitative measurements of protein abundance and modification states are essential in understanding their functions in diverse cellular processes. Typical western blotting, though sensitive, is prone to produce substantial errors and is not readily adapted to high-throughput technologies. Multistrip western blotting is a modified immunoblotting procedure based on simultaneous electrophoretic transfer of proteins from multiple strips of polyacrylamide gels to a single membrane sheet. In comparison with the conventional technique, Multistrip western blotting increases the data output per single blotting cycle up to tenfold, allows concurrent monitoring of up to nine different proteins from the same loading of the sample, and substantially improves the data accuracy by reducing immunoblotting-derived signal errors. This approach enables statistically reliable comparison of different or repeated sets of data, and therefore is beneficial to apply in biomedical diagnostics, systems biology, and cell signaling research.


The Journal of Physiology | 2015

Adiponectin fine‐tuning of liver regeneration dynamics revealed through cellular network modelling

Jason M. Correnti; Daniel Cook; Edita Aksamitiene; Aditi Swarup; Babatunde A. Ogunnaike; Rajanikanth Vadigepalli; Jan B. Hoek

Loss of adiponectin delays the initiation of liver regeneration after partial hepatectomy, but later accelerates regeneration. Loss of adiponectin modulates these regeneration kinetics through decreased hepatocyte response to inflammation and increased growth factor bioavailability. Increased adiponectin suppresses liver regeneration through decreased growth factor bioavailability. Our predictive computational model was able to connect these molecular regulatory events to tissue physiology.


Methods of Molecular Biology | 2015

Multistrip Western Blotting: A Tool for Comparative Quantitative Analysis of Multiple Proteins

Edita Aksamitiene; Jan B. Hoek; Anatoly Kiyatkin

The qualitative and quantitative measurements of protein abundance and modification states are essential in understanding their functions in diverse cellular processes. Typical Western blotting, though sensitive, is prone to produce substantial errors and is not readily adapted to high-throughput technologies. Multistrip Western blotting is a modified immunoblotting procedure based on simultaneous electrophoretic transfer of proteins from multiple strips of polyacrylamide gels to a single membrane sheet. In comparison with the conventional technique, Multistrip Western blotting increases data output per single blotting cycle up to tenfold; allows concurrent measurement of up to nine different total and/or posttranslationally modified protein expression obtained from the same loading of the sample; and substantially improves the data accuracy by reducing immunoblotting-derived signal errors. This approach enables statistically reliable comparison of different or repeated sets of data and therefore is advantageous to apply in biomedical diagnostics, systems biology, and cell signaling research.


Archive | 2017

Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols

Dirk Fey; Edita Aksamitiene; Anatoly Kiyatkin; Boris N. Kholodenko

The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.

Collaboration


Dive into the Edita Aksamitiene's collaboration.

Top Co-Authors

Avatar

Anatoly Kiyatkin

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Jan B. Hoek

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolay M. Borisov

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Sudeep Roy

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Walter Kolch

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Adam L. Baker

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Berkhout

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge