Edith Authié
International Livestock Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edith Authié.
Biological Chemistry | 2002
Gilles Lalmanach; Alain Boulangé; Carole Serveau; Fabien Lecaille; Julio Scharfstein; Francis Gauthier; Edith Authié
Abstract Trypanosomes are the etiological agents of human sleeping sickness and livestock trypanosomosis (nagana), which are major diseases in Africa. Their cysteine proteases (CPs), which are members of the papain family, are expressed during the infective stages of the parasites life cycle. They are suspected to act as pathogenic factors in the mammalian host, where they also trigger prominent immune responses. Trypanosoma congolense, a major pathogenic species in livestock, possesses at least two families of closely related CPs, named CP1 and CP2. Congopain, a CP2-type of enzyme, shares structural and functional resemblances with cruzipain from T. cruzi and with mammalian cathepsin L. Like CPs from other Trypanosomatids, congopain might be an attractive target for trypanocidal drugs. Here we summarise the current knowledge in the two main areas of research on congopain: first, the biochemical properties of congopain were characterised and its substrate specificity was determined, as a first step towards drug design; second, the possibility was being explored that inhibition of congopain by hostspecific antibodies may mitigate the pathology associated with trypanosome infection.
International Journal for Parasitology | 2001
Edith Authié; Alain Boulangé; D. Muteti; Gilles Lalmanach; Francis Gauthier; A.J. Musoke
In order to test the hypothesis that trypanosome cysteine proteinases (CPs) contribute to pathology of trypanosomosis, cattle were immunised with CP1 and/or CP2, the major CPs of Trypanosoma congolense, and subsequently challenged with T. congolense. Immunisation had no effect on the establishment of infection and the development of acute anaemia. However, immunised cattle, unlike control cattle, maintained or gained weight during infection. Their haematocrit and leukocyte counts showed a tendency to recovery after 2-3 months of infection. Cattle immunised with CP2 mounted early and prominent IgG responses to CPs and to the variable surface glycoprotein following challenge. Thus trypanosome CPs may play a role in anaemia and immunosuppression; conversely, anti-CP antibody may modulate the trypanosome-induced pathology.
Molecular and Biochemical Parasitology | 1992
Edith Authié; David K. Muteti; Zeres R. Mbawa; John D. Lonsdale-Eccles; Paul Webster; Clive Wells
A 33-kDa protein of Trypanosoma congolense is a major antigen in infected cattle and the production of antibody to this antigen appeared to correlate with enhanced resistance to trypanosomiasis [4]. Immunoelectron microscopy using a monoclonal antibody (mAb 4C5) raised against the 33-kDa antigen showed a lysosomal localisation, similar to that of a previously described 32-kDa cysteine protease of T. congolense. Both mAb 4C5 and anti-33 kDa antibody from infected cattle bound on Western blots to the cysteine protease that had been purified by affinity chromatography on cystatin-Sepharose. Sepharose-coupled mAb 4C5 was used to affinity purify the antigen from bloodstream forms of T. congolense. On sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), the affinity-purified antigen had a molecular mass of 33 kDa under non-reducing conditions, and 40 kDa under reducing conditions. Anti-33-kDa antibody from infected cattle bound to both non-reduced and reduced affinity-purified antigen on Western blots. Serum from a rabbit immunised with the biochemically purified enzyme also bound the affinity-purified antigen. The affinity-purified antigen displayed proteolytic activity in fibrinogen-containing SDS-PAGE and against Azocoll. It hydrolysed benzyloxycarbonyl-Phe-Arg-7-amino-methyl coumarin (Z-Phe-Arg-NHMec) with a Km similar to that of the biochemically purified enzyme. Proteolytic and peptidolytic activities of the antigen were inhibited by the inhibitors of cysteine proteases, cystatin and trans-epoxysuccinyl-L-leucyl-amido (4-guanidino)butane (E-64). On two-dimensional gel electrophoresis, the antigen displayed similar characteristics to those of the biochemically purified enzyme. We conclude that the 33-kDa antigen of T. congolense and the cysteine protease are the same molecule.
Journal of Biological Chemistry | 1998
Gilles Lalmanach; Fabien Lecaille; Jair R. Chagas; Edith Authié; Julio Scharfstein; Maria A. Juliano; Francis Gauthier
The ability of the prodomains of trypanosomal cysteine proteinases to inhibit their active form was studied using a set of 23 overlapping 15-mer peptides covering the whole prosequence of congopain, the major cysteine proteinase of Trypanosoma congolense. Three consecutive peptides with a common 5-mer sequence YHNGA were competitive inhibitors of congopain. A shorter synthetic peptide consisting of this 5-mer sequence flanked by two Ala residues (AYHNGAA) also inhibited purified congopain. No residue critical for inhibition was identified in this sequence, but a significant improvement in K i value was obtained upon N-terminal elongation. Procongopain-derived peptides did not inhibit lysosomal cathepsins B and L but did inhibit native cruzipain (from Dm28c clone epimastigotes), the major cysteine proteinase ofTrypanosoma cruzi, the proregion of which also contains the sequence YHNGA. The positioning of the YHNGA inhibitory sequence within the prosegment of trypanosomal proteinases is similar to that covering the active site in the prosegment of cysteine proteinases, the three-dimensional structure of which has been resolved. This strongly suggests that trypanosomal proteinases, despite their long C-terminal extension, have a prosegment that folds similarly to that in related mammal and plant cysteine proteinases, resulting in reverse binding within the active site. Such reverse binding could also occur for short procongopain-derived inhibitory peptides, based on their resistance to proteolysis and their ability to retain inhibitory activity after prolonged incubation. In contrast, homologous peptides in related cysteine proteinases did not inhibit trypanosomal proteinases and were rapidly cleaved by these enzymes.
Molecular and Biochemical Parasitology | 1999
Rory E. Morty; Edith Authié; Linda Troeberg; John D. Lonsdale-Eccles; Theresa H.T. Coetzer
Trypanosoma brucei contain a serine oligopeptidase (OP-Tb) that is released into (and remains active in) the blood of trypanosome-infected animals. Here a similar enzyme from Trypanosoma congolense is described. This oligopeptidase, called OP-Tc, was purified using three-phase partitioning, and ion-exchange and affinity chromatography. OP-Tc is inhibited by alkylating agents, by serine peptidase-specific inhibitors including 3,4-dichloroisocoumarin, 4-(2-aminoethyl)benzenesulfonylfluoride and diispropylfluoro-phosphate and by other peptidase inhibitors including leupeptin, antipain and peptidyl chloromethyl ketones. Reducing agents such as dithiothreitol enhanced activity as did heparin, spermine and spermidine. The enzyme has trypsin-like specificity since it cleaved fluorogenic peptides that have basic amino acid residues (Arg or Lys) in the P1 position. Potential substrates without a basic residue in P1 were not hydrolysed. Although OP-Tc has weak arginine aminopeptidase activity, the enzyme clearly preferred substrates that had amino acids in the P2 and P3 positions. Overall, OP-Tc appears to be less efficient than OP-Tb because it usually displayed lower k(cat)/Km values for the substrates tested. However, like OP-Tb, the best substrate for OP-Tc was Cbz-Arg-Arg-AMC (Km = 0.72 microM, k(cat) = 96 s(-1)). OP-Tc preference for amino acids in the P2 position was (Gly,Lys,Arg) > Phe > Leu > Pro. The results also suggest that the P3-binding site has hydrophobic characteristics. OP-Tc may not be a naturally immunodominant molecule because neither IgG nor IgM anti- OP-Tc antibodies were detected in the blood of experimentally infected cattle.
Eukaryotic Cell | 2008
Carlos Mendoza-Palomares; Nicolas Biteau; Christiane Giroud; Virginie Coustou; Theresa H.T. Coetzer; Edith Authié; Alain Boulangé; Théo Baltz
ABSTRACT Cysteine proteases have been shown to be essential virulence factors and drug targets in trypanosomatids and an attractive antidisease vaccine candidate for Trypanosoma congolense. Here, we describe an important amplification of genes encoding cathepsin B-like proteases unique to T. congolense. More than 13 different genes were identified, whereas only one or two highly homologous genes have been identified in other trypanosomatids. These proteases grouped into three evolutionary clusters: TcoCBc1 to TcoCBc5 and TcoCBc6, which possess the classical catalytic triad (Cys, His, and Asn), and TcoCBs7 to TcoCBs13, which contains an unusual catalytic site (Ser, Xaa, and Asn). Expression profiles showed that members of the TcoCBc1 to TcoCBc5 and the TcoCBs7 to TcoCBs13 groups are expressed mainly in bloodstream forms and localize in the lysosomal compartment. The expression of recombinant representatives of each group (TcoCB1, TcoCB6, and TcoCB12) as proenzymes showed that TcoCBc1 and TcoCBc6 are able to autocatalyze their maturation 21 and 31 residues, respectively, upstream of the predicted start of the catalytic domain. Both displayed a carboxydipeptidase function, while only TcoCBc1 behaved as an endopeptidase. TcoCBc1 exhibited biochemical differences regarding inhibitor sensitivity compared to that of other cathepsin B-like proteases. Recombinant pro-TcoCBs12 did not automature in vitro, and the pepsin-matured enzyme was inactive in tests with cathepsin B fluorogenic substrates. In vivo inhibition studies using CA074Me (a cell-permeable cathepsin B-specific inhibitor) demonstrated that TcoCB are involved in lysosomal protein degradation essential for survival in bloodstream form. Furthermore, TcoCBc1 elicited an important immune response in experimentally infected cattle. We propose this family of proteins as a potential therapeutic target and as a plausible antigen for T. congolense diagnosis.
International Journal for Parasitology | 2001
Alain Boulangé; Carole Serveau; Michèle Brillard; Cécile Minet; Francis Gauthier; Adama Diallo; Gilles Lalmanach; Edith Authié
The catalytic domains of two closely related cysteine proteinases (CP1 and CP2) from Trypanosoma congolense, referred to as C1 and C2, were expressed as proforms in Escherichia coli (C1) and in the baculovirus system (C1 and C2). While the bacterial expression system did not allow recovery of active C1, the baculovirus system led to secretion of inactive zymogens which could be processed at acidic pH into mature enzymes. Active C1 and C2 were purified from serum-free culture supernatants by anion-exchange chromatography and characterised. Their kinetic parameters and pH activity profiles confirmed the relatedness between C2 and native CP2 (congopain). These properties also underline major functional differences between C1 and C2, that appear to relate to discrete but essential sequence differences. It is likely that these two enzymes perform distinct roles in vivo, in the parasite and/or in the host-parasite relationships.
Biological Chemistry | 2003
Carole Serveau; Alain Boulangé; Fabien Lecaille; Francis Gauthier; Edith Authié; Gilles Lalmanach
Abstract Congopain, the major cysteine protease from Trypanosoma congolense, is synthesized as an inactive zymogen, and further converted into its active form after removal of the proregion, most probably via an autocatalytic mechanism. Processing of recombinant procongopain occurs via an apparent one-step or a multistep mechanism depending on the ionic strength. The auto-activation is pH-dependent, with an optimum at pH 4.0, and no activation observed at pH 6.0. After addition of dextran sulfate (10 ug/ml), an approx. 20-fold increase of processing (expressed as enzymatic activity) is observed. Furthermore, in the presence of dextran sulfate, procongopain can be processed at pH 8.0, an unusual feature among papainlike enzymes. Detection of procongopain and trypanosomal enzymatic activity in the plasma of T. congolenseinfected cattle, together with the capacity of procongopain to be activated at weakly basic pH, suggest that procongopain may be extracellularly processed in the presence of blood vessel glycosaminoglycans, supporting the hypothesis that congopain acts as a pathogenic factor in host-parasite relationships.
Veterinary Parasitology | 2010
Géraldine Bossard; Alain Boulangé; Philippe Holzmuller; Sophie Thevenon; Delphine Patrel; Edith Authié
Animal trypanosomosis is a serious constraint to livestock productivity in tropical and sub-tropical countries. The pathogenic trypanosomes in bovidae are Trypanosoma congolense, T. vivax, T. brucei and T. evansi. Current serological tests to detect trypanosome infections are based on the use of whole trypanosome lysates; their potential is limited by antigen instability, lack of reproducibility and lack of test specificity due to the antibodys long persistence after treatment. The development of new tests based on recombinant technology that could be standardized and applied on a large scale at low cost would be very helpful. The major invariant antigen recognized by T. congolense infected cattle belongs to the heat shock protein (HSP) 70 family and is closely related to mammalian Immunoglobulin Binding Protein (BiP). To improve the initial ELISA based on a recombinant fragment of HSP70/BiP, we developed an inhibition ELISA using an anti-BiP monoclonal antibody and a full-length fusion protein expressed in E. coli. Here we report on the development of the test and provide an initial assessment of its performance using sets of sera from experimental infections and from naturally infected cattle maintained in tsetse infested areas of Africa. The HSP70/BIP-based inhibition ELISA shows a good sensitivity in cattle experimentally infected with T. congolense, with an improved sensitivity in secondary infections. One major advantage, particularly for its further application in national laboratories, is that one single set of reagents and one single procedure are sufficient to apply on different mammalian host species infected with different trypanosome species.
Molecular and Biochemical Parasitology | 1997
Jair R. Chagas; Edith Authié; Carole Serveau; Gilles Lalmanach; Luiz Juliano; Francis Gauthier
Collaboration
Dive into the Edith Authié's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputs