Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edith Bai is active.

Publication


Featured researches published by Edith Bai.


New Phytologist | 2013

A meta‐analysis of experimental warming effects on terrestrial nitrogen pools and dynamics

Edith Bai; Shanlong Li; Wenhua Xu; Wei Li; Weiwei Dai; Ping Jiang

Global warming may have profound effects on terrestrial ecosystems. However, a comprehensive evaluation of the effects of warming on ecosystem nitrogen (N) pools and dynamics is not available. Here, we compiled data of 528 observations from 51 papers and carried out a meta-analysis of experimental warming effects on 13 variables related to terrestrial N pools and dynamics. We found that, on average, net N mineralization and net nitrification rate were increased by 52.2 and 32.2%, respectively, under experimental warming treatment. N pools were also increased by warming, although the magnitude of this increase was less than that of N fluxes. Soil microbial N and N immobilization were not changed by warming, probably because microbes are limited by carbon sources. Grassland and shrubland/heathland were less responsive to warming than forest, probably because the reduction of soil moisture by warming offset the temperature effect in these areas. Soil heating cable and all-day treatment appeared to be the most effective method on N cycling among all treatment methods. Results of this meta-analysis are useful for better understanding the response of N cycling to global warming and the underlying mechanism of warming effects on plants and ecosystem functions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Imprint of denitrifying bacteria on the global terrestrial biosphere

Benjamin Z. Houlton; Edith Bai

Loss of nitrogen (N) from land limits the uptake and storage of atmospheric CO2 by the biosphere, influencing Earths climate system and myriads of the global ecological functions and services on which humans rely. Nitrogen can be lost in both dissolved and gaseous phases; however, the partitioning of these vectors remains controversial. Particularly uncertain is whether the bacterial conversion of plant available N to gaseous forms (denitrification) plays a major role in structuring global N supplies in the nonagrarian centers of Earth. Here, we use the isotope composition of N (15N/14N) to constrain the transfer of this nutrient from the land to the water and atmosphere. We report that the integrated 15N/14N of the natural terrestrial biosphere is elevated with respect to that of atmospheric N inputs. This cannot be explained by preferential loss of 14N to waterways; rather, it reflects a history of low 15N/14N gaseous N emissions to the atmosphere owing to denitrifying bacteria in the soil. Parameterizing a simple model with global N isotope data, we estimate that soil denitrification (including N2) accounts for ≈1/3 of the total N lost from the unmanaged terrestrial biosphere. Applying this fraction to estimates of N inputs, N2O and NOx fluxes, we calculate that ≈28 Tg of N are lost annually via N2 efflux from the natural soil. These results place isotopic constraints on the widely held belief that denitrifying bacteria account for a significant fraction of the missing N in the global N cycle.


Nature Communications | 2014

Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands

Chao Wang; Xiaobo Wang; Dongwei Liu; Honghui Wu; Yunting Fang; Weixin Cheng; Wentao Luo; Ping Jiang; Jason Shi; Huaqun Yin; Jizhong Zhou; Xingguo Han; Edith Bai

Higher aridity and more extreme rainfall events in drylands are predicted due to climate change. Yet, it is unclear how changing precipitation regimes may affect nitrogen (N) cycling, especially in areas with extremely high aridity. Here we investigate soil N isotopic values (δ(15)N) along a 3,200 km aridity gradient and reveal a hump-shaped relationship between soil δ(15)N and aridity index (AI) with a threshold at AI=0.32. Variations of foliar δ(15)N, the abundance of nitrification and denitrification genes, and metabolic quotient along the gradient provide further evidence for the existence of this threshold. Data support the hypothesis that the increase of gaseous N loss is higher than the increase of net plant N accumulation with increasing AI below AI=0.32, while the opposite is favoured above this threshold. Our results highlight the importance of N-cycling microbes in extremely dry areas and suggest different controlling factors of N-cycling on either side of the threshold.


Global Change Biology | 2013

Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems

Cunzheng Wei; Qiang Yu; Edith Bai; Qi Li; Jianyang Xia; Paul Kardol; Wenju Liang; Zhengwen Wang; Xingguo Han

Soil carbon (C) and nitrogen (N) stoichiometry is a main driver of ecosystem functioning. Global N enrichment has greatly changed soil C : N ratios, but how altered resource stoichiometry influences the complexity of direct and indirect interactions among plants, soils, and microbial communities has rarely been explored. Here, we investigated the responses of the plant-soil-microbe system to multi-level N additions and the role of dissolved organic carbon (DOC) and inorganic N stoichiometry in regulating microbial biomass in semiarid grassland in northern China. We documented a significant positive correlation between DOC and inorganic N across the N addition gradient, which contradicts the negative nonlinear correlation between nitrate accrual and DOC availability commonly observed in natural ecosystems. Using hierarchical structural equation modeling, we found that soil acidification resulting from N addition, rather than changes in the plant community, was most closely related to shifts in soil microbial community composition and decline of microbial respiration. These findings indicate a down-regulating effect of high N availability on plant-microbe interactions. That is, with the limiting factor for microbial biomass shifting from resource stoichiometry to soil acidity, N enrichment weakens the bottom-up control of soil microorganisms by plant-derived C sources. These results highlight the importance of integratively studying the plant-soil-microbe system in improving our understanding of ecosystem functioning under conditions of global N enrichment.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Microbial denitrification dominates nitrate losses from forest ecosystems

Yunting Fang; Keisuke Koba; Akiko Makabe; Chieko Takahashi; Weixing Zhu; Takahiro Hayashi; Azusa A. Hokari; Rieko Urakawa; Edith Bai; Benjamin Z. Houlton; Dan Xi; Shasha Zhang; Kayo Matsushita; Ying Tu; Dongwei Liu; Feifei Zhu; Zhenyu Wang; Guoyi Zhou; Dexiang Chen; Tomoko Makita; Hiroto Toda; Xue-Yan Liu; Quansheng Chen; Deqiang Zhang; Yide Li; Muneoki Yoh

Significance Nitrogen (N) losses from terrestrial ecosystems can occur as inert forms or heat-trapping greenhouse gases, and via nitrate (NO3−) leaching to drainage waters, which can contribute to eutrophication and anoxia in downstream ecosystems. Here, we use natural isotopes to demonstrate that microbial gaseous N production via denitrification is the dominant pathway of NO3− removal from forest ecosystems, with gaseous N losses that are up to ∼60-fold higher than those based on traditional techniques. Denitrification becomes less efficient compared with NO3− leaching in more N-polluted ecosystems, which has important implications for assessing the connections between terrestrial soils and downstream ecosystems under rising anthropogenic N deposition. Denitrification removes fixed nitrogen (N) from the biosphere, thereby restricting the availability of this key limiting nutrient for terrestrial plant productivity. This microbially driven process has been exceedingly difficult to measure, however, given the large background of nitrogen gas (N2) in the atmosphere and vexing scaling issues associated with heterogeneous soil systems. Here, we use natural abundance of N and oxygen isotopes in nitrate (NO3−) to examine dentrification rates across six forest sites in southern China and central Japan, which span temperate to tropical climates, as well as various stand ages and N deposition regimes. Our multiple stable isotope approach across soil to watershed scales shows that traditional techniques underestimate terrestrial denitrification fluxes by up to 98%, with annual losses of 5.6–30.1 kg of N per hectare via this gaseous pathway. These N export fluxes are up to sixfold higher than NO3− leaching, pointing to widespread dominance of denitrification in removing NO3− from forest ecosystems across a range of conditions. Further, we report that the loss of NO3− to denitrification decreased in comparison to leaching pathways in sites with the highest rates of anthropogenic N deposition.


Scientific Reports | 2015

Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

Hui Wang; Thomas W. Boutton; Wenhua Xu; Guoqing Hu; Ping Jiang; Edith Bai

Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.


PLOS ONE | 2013

Patterns of Plant Biomass Allocation in Temperate Grasslands across a 2500-km Transect in Northern China

Wentao Luo; Yong Jiang; Xue Wang; Mai-He Li; Edith Bai; Xingguo Han; Zhuwen Xu

Plant biomass allocation between below- and above-ground parts can actively adapt to the ambient growth conditions and is a key parameter for estimating terrestrial ecosystem carbon (C) stocks. To investigate how climatic variations affect patterns of plant biomass allocation, we sampled 548 plants belonging to four dominant genera (Stipa spp., Cleistogenes spp., Agropyron spp., and Leymus spp.) along a large-scale (2500 km) climatic gradient across the temperate grasslands from west to east in northern China. Our results showed that Leymus spp. had the lowest root/shoot ratios among the each genus. Root/shoot ratios of each genera were positively correlated with mean annual temperature (MAT), and negatively correlated with mean annual precipitation (MAP) across the transect. Temperature contributed more to the variation of root/shoot ratios than precipitation for Cleistogenes spp. (C4 plants), whereas precipitation exerted a stronger influence than temperature on their variations for the other three genera (C3 plants). From east to west, investment of C into the belowground parts increased as precipitation decreased while temperature increased. Such changes in biomass allocation patterns in response to climatic factors may alter the competition regimes among co-existing plants, resulting in changes in community composition, structure and ecosystem functions. Our results suggested that future climate change would have great impact on C allocation and storage, as well as C turnover in the grassland ecosystems in northern China.


Journal of Geophysical Research | 2009

Landscape-scale vegetation dynamics inferred from spatial patterns of soil δ13C in a subtropical savanna parkland

Edith Bai; Thomas W. Boutton; X. Ben Wu; Feng Liu; Steven R. Archer

[1] Grasslands and savannas around the world have experienced woody plant encroachment during the past 100 years, but we know little regarding the manner in which woody plants spread across the landscape. We used soil δ 13 C, aerial photography, and geostatistics to quantify patterns of woody encroachment in a 160 x 100 m georeferenced grid subdivided into 10 × 10 m cells in a savanna parkland landscape in southern Texas. δ 13 C contour maps revealed that centers of closed contours coincided with centers of woody patches, and that larger woody patches developed from smaller woody plant clusters that spread laterally and coalesced. Areas where woody patches were expanding into grassland were characterized by low densities of soil δ 13 C contour lines, and indicated the direction and extent of woody encroachment. Conversely, areas with high contour densities represented grassland-woodland boundaries that were temporally stable. Indeed, aerial photos from 1930, 1941, 1982, and 2003 confirmed that woody patches with low spatial variability in δ 13 C corresponded to areas where woody plants had encroached during the past 30―75 years. While aerial photos can only record vegetation cover at the photo acquisition time, kriged maps of soil δ 13 C allowed us to accurately reconstruct long-term temporal dynamics of woody plant encroachment into grassland. This approach can reliably reconstruct landscape-scale vegetation changes in areas where historical aerial photography or satellite imagery are unavailable and provides a strong spatial context for studies aimed at understanding the functional consequences of vegetation change.


Ecosphere | 2013

15N isoscapes in a subtropical savanna parkland: spatial‐temporal perspectives

Edith Bai; Thomas W. Boutton; Feng Liu; X. Ben Wu; Steven R. Archer

Spatial patterns of soil δ15N reflect variation in rates of N-cycling processes across landscapes. However, the manner in which soil δ15N is affected by vegetation and topoedaphic properties under non-steady state conditions is understood poorly. Here we propose and evaluate a conceptual model that explains how soil δ15N values will respond to changes in disturbance regimes (intensification of grazing and removal of fire) and the resultant invasion of a subtropical grassland by woody vegetation dominated by Prosopis glandulosa (honey mesquite), a N-fixing tree legume. Spatially-specific sampling along a catena (hill-slope) gradient where woody plants are known to have displaced grasses over the past 100 years revealed a positive relationship between soil δ15N and δ13C, and a negative relationship between NDVI and soil δ15N on upland portions of the landscape, indicating that plant cover is a critical determinant of δ15N spatial patterns. Because the dominant woody invader is a N-fixer, its invasion has in...


Ecology | 2016

Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter

Jun Liu; Nana Wu; Hui Wang; Jianfei Sun; Bo Peng; Ping Jiang; Edith Bai

Increasing nitrogen (N) deposition or fertilization has been found to significantly affect carbon (C) cycling. However, a comprehensive understanding of how different C chemical components of plant, litter, and soil would respond to external N addition is still lacking. We compiled data of 1,160 observations from 52 individual studies and conducted a meta-analysis of N addition effects on 18 variables related to C chemical compositions in terrestrial ecosystems. Results showed that plant lignin (+7.13%), plant protein (+25.94%), and soil lignin (+7.30%) were significantly increased by N addition, and plant hemicellulose (-4.39%) was significantly decreased, whereas plant fiber, plant cellulose, plant non-structural carbohydrate (NSC), litter lignin, and litter cellulose were not significantly changed. The effects of N addition on C chemical composition varied among different ecosystems/plant types and different forms of N addition. Increasing treatment duration did not significantly change the effects of N addition on the chemical composition of plant, litter, and soil C. With increasing N addition rate, the effect of N addition on plant lignin, plant fiber, plant cellulose, and plant protein increased, while the effect of N addition on plant hemicellulose, plant NSC, and litter cellulose became more negative. Our meta-analysis provided a systematic evaluation of the responses of different C chemical components to N addition in the plant-litter-soil continuum. Results suggest that the change of plant and soil C chemical composition under N addition may be beneficial for ecosystem C sequestration and could affect ecosystem structure and function in the future.

Collaboration


Dive into the Edith Bai's collaboration.

Top Co-Authors

Avatar

Chao Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ping Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xingguo Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wentao Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongwei Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge