Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edith Chepkorir is active.

Publication


Featured researches published by Edith Chepkorir.


Vector-borne and Zoonotic Diseases | 2013

Isolation of Tick and Mosquito-Borne Arboviruses from Ticks Sampled from Livestock and Wild Animal Hosts in Ijara District, Kenya

Olivia Wesula Lwande; Joel Lutomiah; Vincent Obanda; Francis Gakuya; James Mutisya; Francis Mulwa; George Michuki; Edith Chepkorir; Anne Fischer; Marietjie Venter; Rosemary Sang

Tick-borne viruses infect humans through the bite of infected ticks during opportunistic feeding or through crushing of ticks by hand and, in some instances, through contact with infected viremic animals. The Ijara District, an arid to semiarid region in northern Kenya, is home to a pastoralist community for whom livestock keeping is a way of life. Part of the Ijara District lies within the boundaries of a Kenya Wildlife Service-protected conservation area. Arbovirus activity among mosquitoes, animals, and humans is reported in the region, mainly because prevailing conditions necessitate that people continuously move their animals in search of pasture, bringing them in contact with ongoing arbovirus transmission cycles. To identify the tick-borne viruses circulating among these communities, we analyzed ticks sampled from diverse animal hosts. A total of 10,488 ticks were sampled from both wildlife and livestock hosts and processed in 1520 pools of up to eight ticks per pool. The sampled ticks were classified to species, processed for virus screening by cell culture using Vero cells and RT-PCR (in the case of Hyalomma species), followed by amplicon sequencing. The tick species sampled included Rhipicephalus pulchellus (76.12%), Hyalomma truncatum (8.68%), Amblyomma gemma (5.00%), Amblyomma lepidum (4.34%), and others (5.86%). We isolated and identified Bunyamwera (44), Dugbe (5), Ndumu (2), Semliki forest (25), Thogoto (3), and West Nile (3) virus strains. This observation constitutes a previously unreported detection of mosquito-borne Semliki forest and Bunyamwera viruses in ticks, and association of West Nile virus with A. gemma and Rh. pulchellus ticks. These findings provide additional evidence on the potential role of ticks and associated animals in the circulation of diverse arboviruses in northeastern Kenya, including viruses previously known to be essentially mosquito borne.


Vector-borne and Zoonotic Diseases | 2012

Seroprevalence of Crimean Congo Hemorrhagic Fever Virus in Ijara District, Kenya

Olivia Wesula Lwande; Zephania Irura; Caroline Tigoi; Edith Chepkorir; Benedict Orindi; Lillian Musila; Marietjie Venter; Anne Fischer; Rosemary Sang

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral disease mainly affecting pastoralists who come in contact with animals infested with Hyalomma ticks, which are the key vectors of CCHF virus (CCHFV). CCHFV has been detected among these ticks in parts of North Eastern Kenya. This study aimed to identify acute cases of CCHF, and to determine the extent of previous exposure to CCHFV in an outpatient population attending Sangailu and Ijara health centers, Ijara District, North Eastern Kenya, presenting with acute febrile illnesses. A total of 517 human serum samples were collected from these patients. The samples were screened for the presence of IgM and IgG antibodies to CCHF using CCCHF-IgG and IgM ELISA test kits. A multivariable logistic regression model was used to investigate the risk factors associated with evidence of exposure to CCHFV. A single patient tested positive for anti-CCHF IgM, while 96 were positive for anti-CCHF IgG. The seroprevalence of CCHFV was 23% in Sangailu and 14% in Ijara. Most exposed persons were aged 40-49 years. The likelihood of exposure was highest among farmers (29%). Age, location, and contact with donkeys were significantly associated with exposure to CCHFV. Acute CCHFV infections could be occurring without being detected in this population. This study confirms human exposure to CCHF virus in Ijara District, Kenya, and identifies several significant risk factors associated with exposure to CCHFV.


Emerging Infectious Diseases | 2011

Crimean-Congo Hemorrhagic Fever Virus in Hyalommid Ticks, Northeastern Kenya

Rosemary Sang; Joel Lutomiah; Hellen Koka; Albina Makio; Edith Chepkorir; Caroline Ochieng; Santos Yalwala; James Mutisya; Lilian Musila; Jason H. Richardson; Barry R. Miller; David Schnabel

As part of ongoing arbovirus surveillance, we screened ticks obtained from livestock in northeastern Kenya in 2008 to assess the risk for human exposure to tick-borne viruses. Of 1,144 pools of 8,600 Hyalomma spp. ticks screened for Congo-Crimean hemorrhagic fever virus by reverse transcription PCR, 23 pools were infected, demonstrating a potential for human exposure.


Journal of Medical Entomology | 2014

Ticks and Tick-Borne Viruses From Livestock Hosts in Arid and Semiarid Regions of the Eastern and Northeastern Parts of Kenya

Joel Lutomiah; Lillian Musila; Albina Makio; Caroline Ochieng; Hellen Koka; Edith Chepkorir; James Mutisya; Francis Mulwa; Samoel Khamadi; Barry R. Miller; Joshua Bast; David Schnabel; Eyako Wurapa; Rosemary Sang

ABSTRACT Biodiversity and relative abundance of ticks and associated arboviruses in Garissa (northeastern) and Isiolo (eastern) provinces of Kenya were evaluated. Ticks were collected from livestock, identified to species, pooled, and processed for virus isolation. In Garissa, Rhipicephalus pulchellus Gerstäcker (57.8%) and Hyalomma truncatum Koch (27.8%) were the most abundant species sampled, whereas R. pulchellus (80.4%) and Amblyomma gemma Dönitz (9.6%) were the most abundant in Isiolo. Forty-four virus isolates, comprising Dugbe virus (DUGV; n = 22) and Kupe virus (n = 10; Bunyaviridae: Nirovirus), Dhori virus (DHOV; n = 10; Orthomyxoviridae: Thogotovirus), and Ngari virus (NBIV; n = 2; Bunyaviridae: Orthobunyavirus), were recovered mostly from R. pulchellus sampled in Isiolo. DUGV was mostly recovered from R. pulchellus from sheep and cattle, and DHOV from R. pulchellus from sheep. All Kupe virus isolates were from Isiolo ticks, including R. pulchellus from all the livestock, A. gemma and Amblyomma variegatum F. from cattle, and H. truncatum from goat. NRIV was obtained from R. pulchellus and A. gemma sampled from cattle in Isiolo and Garissa, respectively, while all DHOV and most DUGV (n = 12) were from R. pulchellus sampled from cattle in Garissa. DUGV was also recovered from H. truncatum and Amblyomma hebraeum Koch from cattle and from Rhipicephalus annulatus Say from camel. This surveillance study has demonstrated the circulation of select tick-borne viruses in parts of eastern and northeastern provinces of Kenya, some of which are of public health importance. The isolation of NRIV from ticks is particularly significant because it is usually known to be a mosquito-borne virus affecting humans.


PLOS Neglected Tropical Diseases | 2017

Distribution and abundance of key vectors of Rift Valley fever and other arboviruses in two ecologically distinct counties in Kenya

Rosemary Sang; Samwel Arum; Edith Chepkorir; Gladys Mosomtai; Caroline Tigoi; Faith Sigei; Olivia Wesula Lwande; Tobias Landmann; Hippolyte Affognon; Clas Ahlm; Magnus Evander

Background Rift Valley fever (RVF) is a mosquito-borne viral zoonosis of ruminants and humans that causes outbreaks in Africa and the Arabian Peninsula with significant public health and economic consequences. Humans become infected through mosquito bites and contact with infected livestock. The virus is maintained between outbreaks through vertically infected eggs of the primary vectors of Aedes species which emerge following rains with extensive flooding. Infected female mosquitoes initiate transmission among nearby animals, which amplifies virus, thereby infecting more mosquitoes and moving the virus beyond the initial point of emergence. With each successive outbreak, RVF has been found to expand its geographic distribution to new areas, possibly driven by available vectors. The aim of the present study was to determine if RVF virus (RVFV) transmission risk in two different ecological zones in Kenya could be assessed by looking at the species composition, abundance and distribution of key primary and secondary vector species and the level of virus activity. Methodology Mosquitoes were trapped during short and long rainy seasons in 2014 and 2015 using CO2 baited CDC light traps in two counties which differ in RVF epidemic risk levels(high risk Tana-River and low risk Isiolo),cryo-preserved in liquid nitrogen, transported to the laboratory, and identified to species. Mosquito pools were analyzed for virus infection using cell culture screening and molecular analysis. Findings Over 69,000 mosquitoes were sampled and identified as 40 different species belonging to 6 genera (Aedes, Anopheles, Mansonia, Culex, Aedeomyia, Coquillettidia). The presence and abundance of Aedes mcintoshi and Aedes ochraceus, the primary mosquito vectors associated with RVFV transmission in outbreaks, varied significantly between Tana-River and Isiolo. Ae. mcintoshi was abundant in Tana-River and Isiolo but notably, Aedes ochraceus found in relatively high numbers in Tana-River (n = 1,290), was totally absent in all Isiolo sites. Fourteen virus isolates including Sindbis, Bunyamwera, and West Nile fever viruses were isolated mostly from Ae. mcintoshi sampled in Tana-River. RVFV was not detected in any of the mosquitoes. Conclusion This study presents the geographic distribution and abundance of arbovirus vectors in two Kenyan counties, which may assist with risk assessment for mosquito borne diseases.


PLOS Neglected Tropical Diseases | 2017

Vector competence of populations of Aedes aegypti from three distinct cities in Kenya for chikungunya virus

Sheila B. Agha; Edith Chepkorir; Francis Mulwa; Caroline Tigoi; Samwel Arum; Milehna M. Guarido; Peris Ambala; Betty Chelangat; Joel Lutomiah; David Poumo Tchouassi; Michael J. Turell; Rosemary Sang

Background In April, 2004, chikungunya virus (CHIKV) re-emerged in Kenya and eventually spread to the islands in the Indian Ocean basin, South-East Asia, and the Americas. The virus, which is often associated with high levels of viremia in humans, is mostly transmitted by the urban vector, Aedes aegypti. The expansion of CHIKV presents a public health challenge both locally and internationally. In this study, we investigated the ability of Ae. aegypti mosquitoes from three distinct cities in Kenya; Mombasa (outbreak prone), Kisumu, and Nairobi (no documented outbreak) to transmit CHIKV. Methodology/Principal findings Aedes aegypti mosquito populations were exposed to different doses of CHIKV (105.6–7.5 plaque-forming units[PFU]/ml) in an infectious blood meal. Transmission was ascertained by collecting and testing saliva samples from individual mosquitoes at 5, 7, 9, and 14 days post exposure. Infection and dissemination were estimated by testing body and legs, respectively, for individual mosquitoes at selected days post exposure. Tissue culture assays were used to determine the presence of infectious viral particles in the body, leg, and saliva samples. The number of days post exposure had no effect on infection, dissemination, or transmission rates, but these rates increased with an increase in exposure dose in all three populations. Although the rates were highest in Ae. aegypti from Mombasa at titers ≥106.9 PFU/ml, the differences observed were not statistically significant (χ2 ≤ 1.04, DF = 1, P ≥ 0.31). Overall, about 71% of the infected mosquitoes developed a disseminated infection, of which 21% successfully transmitted the virus into a capillary tube, giving an estimated transmission rate of about 10% for mosquitoes that ingested ≥106.9 PFU/ml of CHIKV. All three populations of Ae. aegypti were infectious as early as 5–7 days post exposure. On average, viral dissemination only occurred when body titers were ≥104 PFU/ml in all populations. Conclusions/Significance Populations of Ae. aegypti from Mombasa, Nairobi, and Kisumu were all competent laboratory vectors of CHIKV. Viremia of the infectious blood meal was an important factor in Ae. aegypti susceptibility and transmission of CHIKV. In addition to viremia levels, temperature and feeding behavior of Ae. aegypti may also contribute to the observed disease patterns.


Journal of Medical Entomology | 2014

Vector Competence of Selected Mosquito Species in Kenya for Ngari and Bunyamwera Viruses

Collins Odhiambo; Marietjie Venter; Edith Chepkorir; Sophia Mbaika; Joel Lutomiah; Robert Swanepoel; Rosemary Sang

ABSTRACT Bunyamwera and Ngari viruses have been isolated from a range of mosquito species in Kenya but their actual role in the maintenance and transmission of these viruses in nature remains unclear. Identification of the mosquito species efficient in transmitting these viruses is critical for estimating the risk of human exposure and understanding the transmission and maintenance mechanism. We determined the vector competence of, Aedes aegypti (L.), Culex quinquefasciatus Say, and Anopheles gambiae Giles for transmission ofBunyamweraand Ngari viruses. Ae. aegypti was moderately susceptible to Bunyamwera virus infection at days 7 and 14. Over 60% of Ae. aegypti with a midgut infection developed a disseminated infection at both time points. Approximately 20% more mosquitoes developed a disseminated infection at day 14 compared with day 7. However, while Ae. aegypti was incompetent for Ngari virus, An. gambiae was moderately susceptible to both viruses with dissemination rates more than double by day 14. Cx. quinquefasciatus was refractory to both Bunyamwera and Ngari viruses. Our results underscore the need to continually monitor emergent arboviral genotypes circulating within particular regions as well as vectors mediating these transmissions to preempt and prevent their adverse effects. The genetic mechanism for species specificity and vector competence owing to reassortment needs further investigation.


PLOS Neglected Tropical Diseases | 2018

Vector competence of Aedes bromeliae and Aedes vitattus mosquito populations from Kenya for chikungunya virus

Francis Mulwa; Joel Lutomiah; Edith Chepkorir; Samwel Okello; Fredrick Eyase; Caroline Tigoi; Michael Kahato; Rosemary Sang

Background Kenya has experienced outbreaks of chikungunya in the past years with the most recent outbreak occurring in Mandera in the northern region in May 2016 and in Mombasa in the coastal region from November 2017 to February 2018. Despite the outbreaks in Kenya, studies on vector competence have only been conducted on Aedes aegypti. However, the role played by other mosquito species in transmission and maintenance of the virus in endemic areas remains unclear. This study sought to determine the possible role of rural Aedes bromeliae and Aedes vittatus in the transmission of chikungunya virus, focusing on Kilifi and West Pokot regions of Kenya. Methods Four day old female mosquitoes were orally fed on chikungunya virus-infected blood at a dilution of 1:1 of the viral isolate and blood (106.4 plaque-forming units [PFU]/ml) using artificial membrane feeder (Hemotek system) for 45 minutes. The engorged mosquitoes were picked and incubated at 29–30°C ambient temperature and 70–80% humidity in the insectary. At days 5, 7 and 10 post-infection, the mosquitoes were carefully dissected to separate the legs and wings from the body and their proboscis individually inserted in the capillary tube containing minimum essential media (MEM) to collect salivary expectorate. The resultant homogenates and the salivary expectorates were tested by plaque assay to determine virus infection, dissemination and transmission potential of the mosquitoes. Results A total of 515 female mosquitoes (311 Ae. bromeliae and 204 Ae. vittatus) were exposed to the East/Central/South Africa (ECSA) lineage of chikungunya virus. Aedes vittatus showed high susceptibility to the virus ranging between 75–90% and moderate dissemination and transmission rates ranging from 35–50%. Aedes bromeliae had moderate susceptibility ranging between 26–40% with moderate dissemination and transmission rates ranging from 27–55%. Conclusion This study demonstrates that both Ae. vittatus and Ae. bromeliae populations from West Pokot and Kilifi counties in Kenya are competent vectors of chikungunya virus. Based on these results, the two areas are at risk of virus transmission in the event of an outbreak. This study underscores the need to institute vector competence studies for populations of potential vector species as a means of evaluating risk of transmission of the emerging and re-emerging arboviruses in diverse regions of Kenya.


Virology Journal | 2013

Mosquito-borne arbovirus surveillance at selected sites in diverse ecological zones of Kenya; 2007 - 2012.

Caroline Ochieng; Joel Lutomiah; Albina Makio; Hellen Koka; Edith Chepkorir; Santos Yalwala; James Mutisya; Lillian Musila; Samoel Khamadi; Jason H. Richardson; Joshua Bast; David Schnabel; Eyako Wurapa; Rosemary Sang


Virology Journal | 2016

Vector competence of Aedes aegypti in transmitting Chikungunya virus: effects and implications of extrinsic incubation temperature on dissemination and infection rates.

Sophiah Mbaika; Joel Lutomiah; Edith Chepkorir; Francis Mulwa; Christopher Khayeka-Wandabwa; Caroline Tigoi; Elijah Oyoo-Okoth; James Mutisya; Zipporah Ng’ang’a; Rosemary Sang

Collaboration


Dive into the Edith Chepkorir's collaboration.

Top Co-Authors

Avatar

Rosemary Sang

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joel Lutomiah

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Caroline Tigoi

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar

Francis Mulwa

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar

James Mutisya

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

David Schnabel

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benedict Orindi

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar

Samoel Khamadi

Kenya Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge