Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edmond J. Remarque is active.

Publication


Featured researches published by Edmond J. Remarque.


Trends in Parasitology | 2008

Apical membrane antigen 1: a malaria vaccine candidate in review

Edmond J. Remarque; Bart W. Faber; Clemens H. M. Kocken; Alan W. Thomas

Apical membrane antigen 1 (AMA1) is a micronemal protein of apicomplexan parasites that appears to be essential during the invasion of host cells. Immune responses to Plasmodium AMA1 can have profound parasite-inhibitory effects, both as measured in vitro and in animal challenge models, suggesting AMA1 as a potential vaccine component. However, AMA1 is polymorphic, probably as a result of immune selection operating on an important target of naturally occurring immunity. The current understanding of AMA1 will be presented, particularly in relation to the vaccine potential of AMA1 and the approaches being taken towards clinical development.


PLOS ONE | 2009

MVA.85A Boosting of BCG and an Attenuated, phoP Deficient M. tuberculosis Vaccine Both Show Protective Efficacy Against Tuberculosis in Rhesus Macaques

Frank A. W. Verreck; Richard A.W. Vervenne; Ivanela Kondova; Klaas W. van Kralingen; Edmond J. Remarque; Gerco Braskamp; Nicole van der Werff; Ariena Kersbergen; Tom H. M. Ottenhoff; Peter J. Heidt; Sarah C. Gilbert; Brigitte Gicquel; Adrian V. S. Hill; Carlos Martín; Helen McShane; Alan W. Thomas

Background Continuous high global tuberculosis (TB) mortality rates and variable vaccine efficacy of Mycobacterium bovis Bacille Calmette-Guérin (BCG) motivate the search for better vaccine regimes. Relevant models are required to downselect the most promising vaccines entering clinical efficacy testing and to identify correlates of protection. Methods and Findings Here, we evaluated immunogenicity and protection against Mycobacterium tuberculosis in rhesus monkeys with two novel strategies: BCG boosted by modified vaccinia virus Ankara expressing antigen 85A (MVA.85A), and attenuated M. tuberculosis with a disrupted phoP gene (SO2) as a single-dose vaccine. Both strategies were well tolerated, and immunogenic as evidenced by induction of specific IFNγ responses. Antigen 85A-specific IFNγ secretion was specifically increased by MVA.85A boosting. Importantly, both MVA.85A and SO2 treatment significantly reduced pathology and chest X-ray scores upon infectious challenge with M. tuberculosis Erdman strain. MVA.85A and SO2 treatment also showed reduced average lung bacterial counts (1.0 and 1.2 log respectively, compared with 0.4 log for BCG) and significant protective effect by reduction in C-reactive protein levels, body weight loss, and decrease of erythrocyte-associated hematologic parameters (MCV, MCH, Hb, Ht) as markers of inflammatory infection, all relative to non-vaccinated controls. Lymphocyte stimulation revealed Ag85A-induced IFNγ levels post-infection as the strongest immunocorrelate for protection (spearmans rho: −0.60). Conclusions Both the BCG/MVA.85A prime-boost regime and the novel live attenuated, phoP deficient TB vaccine candidate SO2 showed significant protective efficacy by various parameters in rhesus macaques. Considering the phylogenetic relationship between macaque and man and the similarity in manifestations of TB disease, these data support further development of these primary and combination TB vaccine candidates.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity

Else M. Bijker; Guido J. H. Bastiaens; Anne C. Teirlinck; Geert-Jan van Gemert; Wouter Graumans; Marga van de Vegte-Bolmer; Rianne Siebelink-Stoter; Theo Arens; Karina Teelen; Wiebke Nahrendorf; Edmond J. Remarque; Will Roeffen; Annemieke Jansens; Dunja Zimmerman; Martijn W. Vos; Ben C. L. van Schaijk; Jorien Wiersma; Andre van der Ven; Quirijn de Mast; Lisette van Lieshout; Jaco J. Verweij; Cornelus C. Hermsen; Anja Scholzen; Robert W. Sauerwein

Volunteers immunized under chloroquine chemoprophylaxis with Plasmodium falciparum sporozoites (CPS) develop complete, long-lasting protection against homologous sporozoite challenge. Chloroquine affects neither sporozoites nor liver-stages, but kills only asexual forms in erythrocytes once released from the liver into the circulation. Consequently, CPS immunization exposes the host to antigens from both preerythrocytic and blood stages, and induced immunity might target either of these stages. We therefore explored the life cycle stage specificity of CPS-induced protection. Twenty-five malaria-naïve volunteers were enrolled in a clinical trial, 15 of whom received CPS immunization. Five immunized subjects and five controls received a sporozoite challenge by mosquito bites, whereas nine immunized and five control subjects received an i.v. challenge with P. falciparum-infected erythrocytes. The latter approach completely bypasses preerythrocytic stages, enabling a direct comparison of protection against either life cycle stage. CPS-immunized subjects (13 of 14) developed anticircumsporozoite antibodies, whereas only one volunteer generated minimal titers against typical blood-stage antigens. IgG from CPS-immunized volunteers did not inhibit asexual blood-stage growth in vitro. All CPS-immunized subjects (5 of 5) were protected against sporozoite challenge. In contrast, nine of nine CPS-immunized subjects developed parasitemia after blood-stage challenge, with identical prepatent periods and blood-stage multiplication rates compared with controls. Intravenously challenged CPS-immunized subjects showed earlier fever and increased plasma concentrations of inflammatory markers D-dimer, IFN-γ, and monokine induced by IFN-γ than i.v. challenged controls. The complete lack of protection against blood-stage challenge indicates that CPS-induced protection is mediated by immunity against preerythrocytic stages. However, evidence is presented for immune recognition of P. falciparum-infected erythrocytes, suggesting memory responses unable to generate functional immunity.


Infection and Immunity | 2008

A Diversity-Covering Approach to Immunization with Plasmodium falciparum Apical Membrane Antigen 1 Induces Broader Allelic Recognition and Growth Inhibition Responses in Rabbits

Edmond J. Remarque; Bart W. Faber; Clemens H. M. Kocken; Alan W. Thomas

ABSTRACT Plasmodium falciparum apical membrane antigen 1 (PfAMA1), a candidate malaria vaccine, is polymorphic. This polymorphism is believed to be generated predominantly under immune selection pressure and, as a result, may compromise attempts at vaccination. Alignment of 355 PfAMA1 sequences shows that around 10% of the 622 amino acid residues can vary between alleles and that linkages between polymorphic residues occur. Using this analysis, we have designed three diversity-covering (DiCo) PfAMA1 sequences that take account of these linkages and, when taken together, on average incorporate 97% of amino acid variability observed. For each of the three DiCo sequences, a synthetic gene was constructed and used to transform the methylotrophic yeast Pichia pastoris, allowing recombinant expression. All three DiCo proteins were reactive with the reduction-sensitive monoclonal antibody 4G2, suggesting the DiCo sequences had conformations similar to those of naturally occurring PfAMA1. Rabbits were immunized with FVO strain PfAMA1 or with the DiCo proteins either individually or as a mixture. Antibody titers and the ability to inhibit parasite growth in vitro were determined. Animals immunized with the DiCo mix performed similarly to animals immunized with FVO AMA1 when measured against FCR3 strain parasites but outperformed animals immunized with FVO AMA1 when assessed against other strains. The levels of growth inhibition (∼70%) induced by the mix of three DiCo proteins were comparable for FVO, 3D7, and HB3, suggesting that a considerable degree of diversity in AMA1 is adequately covered. This suggests that vaccines based upon the DiCo mix approach provide a broader functional immunity than immunization with a single allele.


Journal of Immunology | 2010

Enhancing Blood-Stage Malaria Subunit Vaccine Immunogenicity in Rhesus Macaques by Combining Adenovirus, Poxvirus, and Protein-in-Adjuvant Vaccines

Simon J. Draper; Sumi Biswas; Alexandra J. Spencer; Edmond J. Remarque; Stefania Capone; M. Naddeo; Matthew D. J. Dicks; B. W. Faber; S. C. de Cassan; Antonella Folgori; Alfredo Nicosia; Sarah C. Gilbert; Adrian V. S. Hill

Protein-in-adjuvant formulations and viral-vectored vaccines encoding blood-stage malaria Ags have shown efficacy in rodent malaria models and in vitro assays against Plasmodium falciparum. Abs and CD4+ T cell responses are associated with protective efficacy against blood-stage malaria, whereas CD8+ T cells against some classical blood-stage Ags can also have a protective effect against liver-stage parasites. No subunit vaccine strategy alone has generated demonstrable high-level efficacy against blood-stage infection in clinical trials. The induction of high-level Ab responses, as well as potent T and B cell effector and memory populations, is likely to be essential to achieve immediate and sustained protective efficacy in humans. This study describes in detail the immunogenicity of vaccines against P. falciparum apical membrane Ag 1 in rhesus macaques (Macaca mulatta), including the chimpanzee adenovirus 63 (AdCh63), the poxvirus modified vaccinia virus Ankara (MVA), and protein vaccines formulated in Alhydrogel or CoVaccine HT adjuvants. AdCh63-MVA heterologous prime-boost immunization induces strong and long-lasting multifunctional CD8+ and CD4+ T cell responses that exhibit a central memory-like phenotype. Three-shot (AdCh63-MVA-protein) or two-shot (AdCh63-protein) regimens induce memory B cells and high-titer functional IgG responses that inhibit the growth of two divergent strains of P. falciparum in vitro. Prior immunization with adenoviral vectors of alternative human or simian serotype does not affect the immunogenicity of the AdCh63 apical membrane Ag 1 vaccine. These data encourage the further clinical development and coadministration of protein and viral vector vaccine platforms in an attempt to induce broad cellular and humoral immune responses against blood-stage malaria Ags in humans.


PLOS ONE | 2009

The Quantity and Quality of African Children's IgG Responses to Merozoite Surface Antigens Reflect Protection against Plasmodium falciparum Malaria

David Courtin; Mayke Oesterholt; Harm Huismans; Kwadwo A Kusi; Jacqueline Milet; Cyril Badaut; Oumar Gaye; Will Roeffen; Edmond J. Remarque; Robert W. Sauerwein; André Garcia; Adrian J. F. Luty

Background Antibodies, particularly cytophilic IgG subclasses, with specificity for asexual blood stage antigens of Plasmodium falciparum, are thought to play an important role in acquired immunity to malaria. Evaluating such responses in longitudinal sero-epidemiological field studies, allied to increasing knowledge of the immunological mechanisms associated with anti-malarial protection, will help in the development of malaria vaccines. Methods and Findings We conducted a 1-year follow-up study of 305 Senegalese children and identified those resistant or susceptible to malaria. In retrospective analyses we then compared post-follow-up IgG responses to six asexual-stage candidate malaria vaccine antigens in groups of individuals with clearly defined clinical and parasitological histories of infection with P. falciparum. In age-adjusted analyses, children resistant to malaria as well as to high-density parasitemia, had significantly higher IgG1 responses to GLURP and IgG3 responses to MSP2 than their susceptible counterparts. Among those resistant to malaria, high anti-MSP1 IgG1 levels were associated with protection against high-density parasitemia. To assess functional attributes, we used an in vitro parasite growth inhibition assay with purified IgG. Samples from individuals with high levels of IgG directed to MSP1, MSP2 and AMA1 gave the strongest parasite growth inhibition, but a marked age-related decline was observed in these effects. Conclusion Our data are consistent with the idea that protection against P. falciparum malaria in children depends on acquisition of a constellation of appropriate, functionally active IgG subclass responses directed to multiple asexual stage antigens. Our results suggest at least two distinct mechanisms via which antibodies may exert protective effects. Although declining with age, the growth inhibitory effects of purified IgG measurable in vitro reflected levels of anti-AMA1, -MSP1 and -MSP2, but not of anti-GLURP IgG. The latter could act on parasite growth via indirect parasiticidal pathways.


Journal of Experimental Medicine | 2012

Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo

Jannik Fonager; Erica M. Pasini; Joanna A. M. Braks; Onny Klop; Jai Ramesar; Edmond J. Remarque; Irene O.C.M. Vroegrijk; Sjoerd G. van Duinen; Alan W. Thomas; Shahid M. Khan; Matthias Mann; Clemens H. M. Kocken; Chris J. Janse; Blandine Franke-Fayard

P. berghei ANKA parasites deficient in schizont membrane-associated cytoadherence protein reveal a beneficial role for CD36-mediated tissue sequestration in aiding parasite growth.


Proceedings of the National Academy of Sciences of the United States of America | 2010

AIDS-protective HLA-B*27/B*57 and chimpanzee MHC class I molecules target analogous conserved areas of HIV-1/SIVcpz

Natasja G. de Groot; Corrine M. C. Heijmans; Yvonne M. Zoet; Arnoud H. de Ru; Frank A. W. Verreck; Peter A. van Veelen; Jan W. Drijfhout; Gaby G. M. Doxiadis; Edmond J. Remarque; Ilias I.N. Doxiadis; Jon J. van Rood; Frits Koning; Ronald E. Bontrop

In the absence of treatment, most HIV-1-infected humans develop AIDS. However, a minority are long-term nonprogressors, and resistance is associated with the presence of particular HLA-B*27/B*57 molecules. In contrast, most HIV-1-infected chimpanzees do not contract AIDS. In comparison with humans, chimpanzees experienced an ancient selective sweep affecting the MHC class I repertoire. We have determined the peptide-binding properties of frequent chimpanzee MHC class I molecules, and show that, like HLA-B*27/B*57, they target similar conserved areas of HIV-1/SIVcpz. In addition, many animals appear to possess multiple molecules targeting various conserved areas of the HIV-1/SIVcpz Gag protein, a quantitative aspect of the immune response that may further minimize the chance of viral escape. The functional characteristics of the contemporary chimpanzee MHC repertoire suggest that the selective sweep was caused by a lentiviral pandemic.


Infection and Immunity | 2010

New Candidate Vaccines against Blood-Stage Plasmodium falciparum Malaria: Prime-Boost Immunization Regimens Incorporating Human and Simian Adenoviral Vectors and Poxviral Vectors Expressing an Optimized Antigen Based on Merozoite Surface Protein 1

Anna L. Goodman; C. Epp; David K. Moss; Anthony A. Holder; James M. Wilson; Guangping Gao; Carole A. Long; Edmond J. Remarque; Alan W. Thomas; Virginia Ammendola; Stefano Colloca; Matthew D. J. Dicks; Sumi Biswas; D. Seibel; L. M. van Duivenvoorde; Sarah C. Gilbert; Adrian V. S. Hill; Simon J. Draper

ABSTRACT Although merozoite surface protein 1 (MSP-1) is a leading candidate vaccine antigen for blood-stage malaria, its efficacy in clinical trials has been limited in part by antigenic polymorphism and potentially by the inability of protein-in-adjuvant vaccines to induce strong cellular immunity. Here we report the design of novel vectored Plasmodium falciparum vaccines capable of overcoming such limitations. We optimized an antigenic insert comprising the four conserved blocks of MSP-1 fused to tandemly arranged sequences that represent both allelic forms of the dimorphic 42-kDa C-terminal region. Inserts were expressed by adenoviral and poxviral vectors and employed in heterologous prime-boost regimens. Simian adenoviral vectors were used in an effort to circumvent preexisting immunity to human adenoviruses. In preclinical studies these vaccines induced potent cellular immune responses and high-titer antibodies directed against MSP-1. The antibodies induced were found to have growth-inhibitory activity against dimorphic allelic families of P. falciparum. These vectored vaccines should allow assessment in humans of the safety and efficacy of inducing strong cellular as well as cross-strain humoral immunity to P. falciparum MSP-1.


PLOS ONE | 2011

The Breadth, but Not the Magnitude, of Circulating Memory B Cell Responses to P. falciparum Increases with Age/Exposure in an Area of Low Transmission

Sarah I. Nogaro; Julius C. R. Hafalla; Brigitte Walther; Edmond J. Remarque; Kevin K. A. Tetteh; David J. Conway; Eleanor M. Riley; Michael Walther

Background Malaria caused by Plasmodium falciparum remains a major cause of death in sub-Saharan Africa. Immunity against symptoms of malaria requires repeated exposure, suggesting either that the parasite is poorly immunogenic or that the development of effective immune responses to malaria may be impaired. Methods We carried out two age-stratified cross-sectional surveys of anti-malarial humoral immune responses in a Gambian village where P. falciparum malaria transmission is low and sporadic. Circulating antibodies and memory B cells (MBC) to four malarial antigens were measured using ELISA and cultured B cell ELISpot. Findings and Conclusions The proportion of individuals with malaria-specific MBC and antibodies, and the average number of antigens recognised by each individual, increased with age but the magnitude of these responses did not. Malaria-specific antibody levels did not correlate with either the prevalence or median number of MBC, indicating that these two assays are measuring different aspects of the humoral immune response. Among those with immunological evidence of malaria exposure (defined as a positive response to at least one malarial antigen either by ELISA or ELISPOT), the median number of malaria-specific MBC was similar to median numbers of diphtheria-specific MBC, suggesting that the circulating memory cell pool for malaria antigens is of similar size to that for other antigens.

Collaboration


Dive into the Edmond J. Remarque's collaboration.

Top Co-Authors

Avatar

Alan W. Thomas

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Bart W. Faber

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Clemens H. M. Kocken

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole van der Werff

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corrine M. C. Heijmans

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Natasja G. de Groot

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaby G. M. Doxiadis

Biomedical Primate Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge