Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edmond J. Walsh is active.

Publication


Featured researches published by Edmond J. Walsh.


Journal of Fluid Mechanics | 2010

Quadrant analysis of a transitional boundary layer subject to free-stream turbulence

K. P. Nolan; Edmond J. Walsh; Donald M. McEligot

This paper presents analyses of particle image velocimetry measurements from a boundary layer on a flat plate subject to grid-generated free-stream turbulence. The pre-transition region and early stages of breakdown to turbulent spots are explored by means of quadrant analysis and quadrant hole analysis. By isolating the contributors to the Reynolds shear stresses, it is possible to identify coherent structures within the flow that are responsible for the production of TKE. It is found that so called ‘ejection’ events are the most significant form of disturbance, exhibiting the largest amplitude behaviour with increased negative spanwise vorticity. Sweep events become increasingly large close to the wall with increased Reynolds number and intermittency.


Journal of Heat Transfer-transactions of The Asme | 2011

Heat Transfer Enhancement Using Laminar Gas-Liquid Segmented Plug Flows

Y. S. Muzychka; Edmond J. Walsh; Pat Walsh

Heat transfer enhancement using segmented nonboiling gas-liquid flow is examined. Segmentation results in a two phase flow of liquid/gas having a constant liquid fraction; i.e., no phase change occurs. In this flow configuration, enhanced heat transfer occurs as a result of a shorter effective thermal length due to internal fluid circulation in the liquid plugs. A simple theory for laminar segmented flows is developed based on scaled Graetz theory and comparisons made with existing published data from the literature and new experimental data obtained in a companion study. The proposed model is valid for an isothermal tube wall provided that the axial residence time of the flow is such that dimensionless tube length L * <0.1.


Journal of Heat Transfer-transactions of The Asme | 2010

Simple Models for Laminar Thermally Developing Slug Flow in Noncircular Ducts and Channels

Y. S. Muzychka; Edmond J. Walsh; Pat Walsh

Solutions to the classical Graetz slug flow problem (uniform velocity distribution) in noncircular ducts are examined. These solutions have applications where a constant uniform velocity distribution exists across a channel or duct. These are most often realized in the laminar flow of low Prandtl number liquids, such as liquid metals, and low Reynolds number flows through porous media. Expressions are developed for a number of applications using the asymptotic correlation method of Churchill and Usagi. These expressions vary depending on the definition used for the dimensionless heat transfer coefficient, in the case of constant wall temperature boundary condition (T), and the dimensionless wall temperature for the constant flux boundary conditions (H) and (H1). Finally, simple expressions are developed for predicting the thermal entrance length and fully developed flow Nu values for noncircular ducts.


Journal of Fluids Engineering-transactions of The Asme | 2008

Entropy Generation in the Viscous Parts of Turbulent Boundary Layers

Donald M. McEligot; Edmond J. Walsh; Eckart Laurien; Philippe R. Spalart

The local (pointwise) entropy generation rate per unit volume S is a key to improving many energy processes and applications. Consequently, in the present study, the objectives are to examine the effects of Reynolds number and favorable streamwise pressure gradients on entropy generation rates across turbulent boundary layers on flat plates and—secondarily—to assess a popular approximate technique for their evaluation. About two-thirds or more of the entropy generation occurs in the viscous part, known as the viscous layer. Fundamental new results for entropy generation in turbulent boundary layers are provided by extending available direct numerical simulations. It was found that, with negligible pressure gradients, results presented in wall coordinates are predicted to be near “universal” in the viscous layer. This apparent universality disappears when a significant pressure gradient is applied; increasing the pressure gradient decreases the entropy generation rate. Within the viscous layer, the approximate evaluation of S differs significantly from the “proper” value but its integral, the entropy generation rate per unit surface area S, agrees within 5% at its edge.


Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer | 2009

Laminar Slug Flow: Heat Transfer Characteristics With Constant Heat Flux Boundary

Pat Walsh; Edmond J. Walsh; Y. S. Muzychka

The problem of elevated heat flux in modern electronics has led to the development of numerous liquid cooling devices which yield superior heat transfer coefficients over their air based counterparts. This study investigates the use of liquid/gas slug flows where a liquid coolant is segregated into discrete slugs, resulting in a segmented flow, and heat transfer rates are enhanced by an internal circulation within slugs. This circulation directs cooler fluid from the center of the slug towards the heated surface and elevates the temperature difference at the wall. An experimental facility is built to examine this problem in circular tube flow with a constant wall heat flux boundary condition. This was attained by Joule heating a thin walled stainless steel tube. Water was used as the coolant and air as the segregating phase. The flow rates of each were controlled using high precision syringe pumps and a slug producing mechanism was introduced for segmenting the flow into slugs of various lengths at any particular flow rate. Tube flows with Reynolds numbers in the range 10 to 1500 were examined ensuring a well ordered segmented flow throughout. Heat transfer performance was calculated by measuring the exterior temperature of the thin tube wall at various locations using an Infrared camera. Nusselt number results are presented for inverse Graetz numbers over four decades, which spans both the thermally developing and developed regions. The results show that Nu in the early thermally developing region are slightly inferior to single phase flows for heat transfer performance but become far superior at higher values of inverse Gr. Additionally, the slug length plays an important role in maximizing Nusselt number in the fully developed region as Nu plateaus at different levels for slugs of differing lengths. Overall, this paper provides a new body of experimental findings relating to segmented flow heat transfer in constant heat flux tubes without boiling. Put abstract text here.Copyright


intersociety conference on thermal and thermomechanical phenomena in electronic systems | 2008

An experimental study on the performance of miniature heat sinks for forced convection air cooling

Vanessa Egan; Jason Stafford; Pat Walsh; Edmond J. Walsh; Ronan Grimes

In recent years the design of portable electronic devices must incorporate thermal analyses to ensure the device can be adequately cooled to acceptable temperatures. Consumer demand for smaller, more powerful devices has lead to an increase in the heat required to be dissipated and a reduction in the surface area both of which result in an increased heat flux. In this paper, an experimental study is performed on one of the smallest commercially available miniature fans, suitable for cooling portable electronic devices, used in conjunction with both finned and finless heat sinks. Previous analysis has shown that due to fan exit angle, flow does not enter the heat sinks parallel to the fins or bounding walls. This results in a non uniform flow rate within the channels of the finned and finless heat sink along with impingement of the flow at the entrance giving rise to large entrance pressure losses. In this paper straightening diffusers were attached at the exit of the fan which resulted in aligning the flow entering the heat sinks with the fins and channel walls. In designing the finned heat sink current optimization criterion for finned heat exchangers has been applied to ensure maximum heat transfer rates; the finless heat sink was designed to the same specifications. The maximum overall footprint area of the cooling solution is 534 mm2 with a profile height of 5 mm. The thermal performance of each cooling solution was investigated by quantifying its thermal resistance over a range of fan speeds and comparing the results to cases without diffusers. In order to investigate the flow field, detailed velocity measurements were obtained using Particle Image Velocimetry, which provided a further insight into the physics of the flow in such miniature geometries and in designing the straightening diffusers. The thermal analysis results indicate that the cooling power of the solution is increased by up to 20% through the introduction of a diffuser. Hence, demonstrating the need for integrated fan and heat sink design of low profile applications.


ASME 2006 International Mechanical Engineering Congress and Exposition | 2006

Film Thickness for Two Phase Flow in a Microchannel

Ronan Grimes; Colin King; Edmond J. Walsh

The issue of contamination of micro channel surfaces by bio fluids is a significant impediment to the development of many biomedical devices. A solution to this problem is the use of a carrier fluid, which segments the bio fluid and forms a thin film between the bio fluid and the channel wall. A number of issues need to be addressed for the successful implementation of such a solution. Amongst these is the prediction of the thickness of the film of carrier fluid which forms between the bio sample and the channel wall. The Bretherton and Taylor laws relate the capillary number to the thickness of this film. This paper investigates the validity of these laws through an extensive experimental program in which a number of potential carrier fluids were used to segment aqueous droplets over a range of flow rates. The aqueous plugs were imaged using a high speed camera and their velocities were measured. Film thicknesses were calculated from the ratio of the velocity of the carrier fluid to the velocity of the aqueous plug. The paper concludes that significant discrepancies exist between measured film thicknesses and those predicted by the Bretherton and Taylor laws.Copyright


Journal of Turbomachinery-transactions of The Asme | 2007

Predicting Entropy Generation Rates in Transitional Boundary Layers Based on Intermittency

Kevin P. Nolan; Edmond J. Walsh; Donald M. McEligot; Ralph J. Volino

Prediction of thermodynamic loss in transitional boundary layers is typically based on time-averaged data only. This approach effectively ignores the intermittent nature of the transition region. In this work laminar and turbulent conditionally sampled boundary layer data for zero pressure gradient and accelerating transitional boundary layers have been analyzed to calculate the entropy generation rate in the transition region. By weighting the nondimensional dissipation coefficient for the laminar conditioned data and turbulent conditioned data with the intermittency factor, the entropy generation rate in the transition region can be determined and compared to the time-averaged data and correlations for laminar and turbulent flow. It is demonstrated that this method provides an accurate and detailed picture of the entropy generation rate during transition in contrast with simple time averaging. The data used in this paper have been taken from conditionally sampled boundary layer measurements available in the literature for favorable pressure gradient flows. Based on these measurements, a semi-empirical technique is developed to predict the entropy generation rate in a transitional boundary layer with promising results.


Nature Communications | 2017

Microfluidics with fluid walls.

Edmond J. Walsh; Alexander Feuerborn; James H. R. Wheeler; Ann Na Tan; William M. Durham; Kevin R. Foster; Peter R. Cook

Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method — Freestyle Fluidics — that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications — triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.


Journal of Fluids Engineering-transactions of The Asme | 2007

Conditionally-Sampled Turbulent and Nonturbulent Measurements of Entropy Generation Rate in the Transition Region of Boundary Layers

Edmond J. Walsh; Kevin P. Nolan; Donald M. McEligot; Ralph J. Volino; Adrian Bejan

Conditionally-sampled boundary layer data for an accelerating transitional boundary layer have been analyzed to calculate the entropy generation rate in the transition region. By weighing the nondimensional dissipation coefficient for the laminar-conditioned-data and turbulent-conditioned-data with the intermittency factor the average entropy generation rate in the transition region can be determined and hence be compared to the time averaged data and correlations for steady laminar and turbulent flows. It is demonstrated that this method provides, for the first time, an accurate and detailed picture of the entropy generation rate during transition. The data used in this paper have been taken from detailed boundary layer measurements available in the literature. This paper provides, using an intermittency weighted approach, a methodology for predicting entropy generation in a transitional boundary layer.

Collaboration


Dive into the Edmond J. Walsh's collaboration.

Top Co-Authors

Avatar

Pat Walsh

University of Limerick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Punch

University of Limerick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. S. Muzychka

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin King

University of Limerick

View shared research outputs
Researchain Logo
Decentralizing Knowledge