Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edouard Boex-Fontvieille is active.

Publication


Featured researches published by Edouard Boex-Fontvieille.


Current Opinion in Plant Biology | 2012

Respiratory carbon fluxes in leaves.

Guillaume Tcherkez; Edouard Boex-Fontvieille; Aline Mahé; Michael Hodges

Leaf respiration is a major metabolic process that drives energy production and growth. Earlier works in this field were focused on the measurement of respiration rates in relation to carbohydrate content, photosynthesis, enzymatic activities or nitrogen content. Recently, several studies have shed light on the mechanisms describing the regulation of respiration in the light and in the dark and on associated metabolic flux patterns. This review will highlight advances made into characterizing respiratory fluxes and provide a discussion of metabolic respiration dynamics in relation to important biological functions.


PLOS ONE | 2013

Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation.

Edouard Boex-Fontvieille; Marlène Daventure; Mathieu Jossier; Michel Zivy; Michael Hodges; Guillaume Tcherkez

Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.


Plant Biology | 2013

Protein phosphorylation and photorespiration.

Michael Hodges; Mathieu Jossier; Edouard Boex-Fontvieille; Guillaume Tcherkez

Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.


New Phytologist | 2013

A new anaplerotic respiratory pathway involving lysine biosynthesis in isocitrate dehydrogenase-deficient Arabidopsis mutants

Edouard Boex-Fontvieille; Paul P. G. Gauthier; Françoise Gilard; Michael Hodges; Guillaume Tcherkez

The cornerstone of carbon (C) and nitrogen (N) metabolic interactions - respiration - is presently not well understood in plant cells: the source of the key intermediate 2-oxoglutarate (2OG), to which reduced N is combined to yield glutamate and glutamine, remains somewhat unclear. We took advantage of combined mutations of NAD- and NADP-dependent isocitrate dehydrogenase activity and investigated the associated metabolic effects in Arabidopsis leaves (the major site of N assimilation in this genus), using metabolomics and (13)C-labelling techniques. We show that a substantial reduction in leaf isocitrate dehydrogenase activity did not lead to changes in the respiration efflux rate but respiratory metabolism was reorchestrated: 2OG production was supplemented by a metabolic bypass involving both lysine synthesis and degradation. Although the recycling of lysine has long been considered important in sustaining respiration, we show here that lysine neosynthesis itself participates in an alternative respiratory pathway. Lys metabolism thus contributes to explaining the metabolic flexibility of plant leaves and the effect (or the lack thereof) of respiratory mutations.


Plant Biology | 2014

Phosphorylation pattern of Rubisco activase in Arabidopsis leaves.

Edouard Boex-Fontvieille; M. Daventure; Mathieu Jossier; Michael Hodges; Michel Zivy; Guillaume Tcherkez

Rubisco activase (RCA) is an ancillary photosynthetic protein essential for Rubisco activity. Some data suggest that post-translational modifications (such as reduction of disulphide bridges) are involved in the regulation of RCA activity. However, despite the key role of protein phosphorylation in general metabolic regulation, RCA phosphorylation has not been well characterised. We took advantage of phosphoproteomics and gas exchange analyses with instant sampling adapted to Arabidopsis rosettes to examine the occurrence and variations of phosphopeptides associated with RCA in different photosynthetic contexts (CO2 mole fraction, light and dark). We detected two phosphopeptides from RCA corresponding to residues Thr 78 and Ser 172, and show that the former is considerably more phosphorylated in the dark than in the light, while the latter show no light/dark pattern. The CO2 mole fraction did not influence phosphorylation of either residue. Phosphorylation thus appears to be a potential mechanism associated with RCA dark inactivation, when Rubisco-catalysed carboxylation is arrested. Since Thr 78 and Ser 172 are located in the N and Walker domains of the protein, respectively, the involvement of phosphorylation in protein-protein interaction and catalysis is likely.


Journal of Experimental Botany | 2014

Photosynthetic activity influences cellulose biosynthesis and phosphorylation of proteins involved therein in Arabidopsis leaves

Edouard Boex-Fontvieille; Marlène Davanture; Mathieu Jossier; Michel Zivy; Michael Hodges; Guillaume Tcherkez

Cellulose is one of the most important organic compounds in terrestrial ecosystems and represents a major plant structural polymer. However, knowledge of the regulation of cellulose biosynthesis is still rather limited. Recent studies have shown that the phosphorylation of cellulose synthases (CESAs) may represent a key regulatory event in cellulose production. However, the impact of environmental conditions on the carbon flux of cellulose deposition and on phosphorylation levels of CESAs has not been fully elucidated. Here, we took advantage of gas exchange measurements, isotopic techniques, metabolomics, and quantitative phosphoproteomics to investigate the regulation of cellulose production in Arabidopsis rosette leaves in different photosynthetic contexts (different CO2 mole fractions) or upon light/dark transition. We show that the carbon flux to cellulose production increased with photosynthesis, but not proportionally. The phosphorylation level of several phosphopeptides associated with CESA1 and 3, and several enzymes of sugar metabolism was higher in the light and/or increased with photosynthesis. By contrast, a phosphopeptide (Ser126) associated with CESA5 seemed to be more phosphorylated in the dark. Our data suggest that photosynthetic activity affects cellulose deposition through the control of both sucrose metabolism and cellulose synthesis complexes themselves by protein phosphorylation.


Nature plants | 2016

In vivo stoichiometry of photorespiratory metabolism

Cyril Abadie; Edouard Boex-Fontvieille; Adam J. Carroll; Guillaume Tcherkez

Photorespiration is a major light-dependent metabolic pathway that consumes oxygen and produces carbon dioxide. In the metabolic step responsible for carbon dioxide production, two molecules of glycine (equivalent to two molecules of O2) are converted into one molecule of serine and one molecule of CO2. Here, we use quantitative isotopic techniques to determine the stoichiometry of this reaction in sunflower leaves, and thereby the O2/CO2 stoichiometry of photorespiration. We find that the effective O2/CO2 stoichiometric coefficient at the leaf level is very close to 2 under normal photorespiratory conditions, in line with expectations, but increases slightly at high rates of photorespiration. The net metabolic impact of this imbalance is likely to be modest.


Plant Physiology | 2016

A Brachypodium UDP-Glycosyltransferase Confers Root Tolerance to Deoxynivalenol and Resistance to Fusarium Infection

Jean-Claude Pasquet; Valentin Changenet; Catherine Macadré; Edouard Boex-Fontvieille; Camille Soulhat; Oumaya Bouchabke-Coussa; Marion Dalmais; Vessela Atanasova-Penichon; Abdelhafid Bendahmane; Patrick Saindrenan; Marie Dufresne

The UDP-glucosyltransferase Bradi5g03300 conjugates the Fusarium mycotoxin deoxynivalenol into deoxynivalenol-3-O-glucose and confers resistance to primary infection by Fusarium graminearum. Fusarium head blight (FHB) is a cereal disease caused by Fusarium graminearum, a fungus able to produce type B trichothecenes on cereals, including deoxynivalenol (DON), which is harmful for humans and animals. Resistance to FHB is quantitative, and the mechanisms underlying resistance are poorly understood. Resistance has been related to the ability to conjugate DON into a glucosylated form, deoxynivalenol-3-O-glucose (D3G), by secondary metabolism UDP-glucosyltransferases (UGTs). However, functional analyses have never been performed within a single host species. Here, using the model cereal species Brachypodium distachyon, we show that the Bradi5g03300 UGT converts DON into D3G in planta. We present evidence that a mutation in Bradi5g03300 increases root sensitivity to DON and the susceptibility of spikes to F. graminearum, while overexpression confers increased root tolerance to the mycotoxin and spike resistance to the fungus. The dynamics of expression and conjugation suggest that the speed of DON conjugation rather than the increase of D3G per se is a critical factor explaining the higher resistance of the overexpressing lines. A detached glumes assay showed that overexpression but not mutation of the Bradi5g03300 gene alters primary infection by F. graminearum, highlighting the involvement of DON in early steps of infection. Together, these results indicate that early and efficient UGT-mediated conjugation of DON is necessary and sufficient to establish resistance to primary infection by F. graminearum and highlight a novel strategy to promote FHB resistance in cereals.


Journal of Biological Chemistry | 2015

Experimental Evidence for a Hydride Transfer Mechanism in Plant Glycolate Oxidase Catalysis

Younès Dellero; Caroline Mauve; Edouard Boex-Fontvieille; Valérie Flesch; Mathieu Jossier; Guillaume Tcherkez; Michael Hodges

Background: Uncertainty remains about the nature of transition states along the reductive half-reaction of glycolate oxidase. Results: Deuterated glycolate and solvent slow down plant glycolate oxidase catalysis to a modest extent. Conclusion: Isotope effects support a hydride transfer mechanism and indicate glycolate deprotonation to be only partially rate-limiting. Significance: Understanding the catalytic mechanism of the enzyme is crucial for designing drugs/herbicides to inhibit its activity. In plants, glycolate oxidase is involved in the photorespiratory cycle, one of the major fluxes at the global scale. To clarify both the nature of the mechanism and possible differences in glycolate oxidase enzyme chemistry from C3 and C4 plant species, we analyzed kinetic parameters of purified recombinant C3 (Arabidopsis thaliana) and C4 (Zea mays) plant enzymes and compared isotope effects using natural and deuterated glycolate in either natural or deuterated solvent. The 12C/13C isotope effect was also investigated for each plant glycolate oxidase protein by measuring the 13C natural abundance in glycolate using natural or deuterated glycolate as a substrate. Our results suggest that several elemental steps were associated with an hydrogen/deuterium isotope effect and that glycolate α-deprotonation itself was only partially rate-limiting. Calculations of commitment factors from observed kinetic isotope effect values support a hydride transfer mechanism. No significant differences were seen between C3 and C4 enzymes.


Plant Physiology | 2011

Experimental evidence of phosphoenolpyruvate resynthesis from pyruvate in illuminated leaves

Guillaume Tcherkez; Aline Mahé; Edouard Boex-Fontvieille; Elisabeth Gout; Florence Guérard; Richard Bligny

Day respiration is the cornerstone of nitrogen assimilation since it provides carbon skeletons to primary metabolism for glutamate (Glu) and glutamine synthesis. However, recent studies have suggested that the tricarboxylic acid pathway is rate limiting and mitochondrial pyruvate dehydrogenation is partly inhibited in the light. Pyruvate may serve as a carbon source for amino acid (e.g. alanine) or fatty acid synthesis, but pyruvate metabolism is not well documented, and neither is the possible resynthesis of phosphoenolpyruvate (PEP). Here, we examined the capacity of pyruvate to convert back to PEP using 13C and 2H labeling in illuminated cocklebur (Xanthium strumarium) leaves. We show that the intramolecular labeling pattern in Glu, 2-oxoglutarate, and malate after 13C-3-pyruvate feeding was consistent with 13C redistribution from PEP via the PEP-carboxylase reaction. Furthermore, the deuterium loss in Glu after 2H3-13C-3-pyruvate feeding suggests that conversion to PEP and back to pyruvate washed out 2H atoms to the solvent. Our results demonstrate that in cocklebur leaves, PEP resynthesis occurred as a flux from pyruvate, approximately 0.5‰ of the net CO2 assimilation rate. This is likely to involve pyruvate inorganic phosphate dikinase and the fundamental importance of this flux for PEP and inorganic phosphate homeostasis is discussed.

Collaboration


Dive into the Edouard Boex-Fontvieille's collaboration.

Top Co-Authors

Avatar

Guillaume Tcherkez

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Zivy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Aline Mahé

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam J. Carroll

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Cyril Abadie

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Gout

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge