Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edouard Miambi is active.

Publication


Featured researches published by Edouard Miambi.


Science of The Total Environment | 2013

Increased lead availability and enzyme activities in root-adhering soil of Lantana camara during phytoextraction in the presence of earthworms.

My Dung Jusselme; Edouard Miambi; Philippe Mora; Michel Diouf; Corinne Rouland-Lefèvre

Earthworms are known to increase availability of heavy metals in soils and also play an important role in maintaining the structure and quality of soil. The introduction of earthworms into soils contaminated with metals in the presence of a potential hyperaccumulator has been suggested as an aid for phytoremediation processes. The present study was conducted to evaluate: (i) the effects of earthworms on lead availability in artificially contaminated soil at 500 and 1000 mg kg(-1) Pb in the presence of Lantana camara, a hyperaccumulator, (ii) the effects of earthworms and lead on soil properties such as pH, cation exchange capacity (CEC), organic matter (OM), total and available N, P and K and (iii) soil enzyme activities. Earthworms increased the bioavailable Pb in root-adhering soil by a factor of 2 to 3 in the contaminated soils at concentrations of 500 to 1000 mg Pb kg(-1), respectively. In lead contaminated soils, the presence of earthworms led to a significant decrease in soil pH by about 0.2 but increased CEC by 17% and OM by more than 30%. Earthworm activities also increased the activities of N-acetylglucosamidase, β-glucosidase, cellulase, xylanase, alkaline and acid phosphatase, urease and fluorescein diacetate assay (FDA). These results indicate that the ecological context for phytoremediation should be broadened by considering plant-soil-earthworm interactions as they influence both plant health and absorption of heavy metals. They also showed that the enzyme activities monitored could serve as useful proxies for phytoremediation capability and, more generally, for soil quality as a whole.


Science of The Total Environment | 2012

Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil.

My Dung Jusselme; Franck Poly; Edouard Miambi; Philippe Mora; Manuel Blouin; Anne Pando; Corinne Rouland-Lefèvre

The present study aimed to assess the potential abilities of Lantana camara, an invasive plant species for phytoremediation in the presence of earthworm Pontoscolex corethrurus. Effects of earthworm on growth and lead (Pb) uptake by L. camara plant were studied in soil artificially contaminated at 500 or 1000mg of Pb kg(-1) soil. This species has a promising value for phytoremediation because it can uptake as much as 10% of 1000mgkg(-1) of Pb per year. Moreover, the presence of earthworms enhanced plant biomass by about 1.5-2 times and increased the uptake of lead by about 2-3 times. In the presence of earthworm, L. camara was thus able to uptake up 20% of Pb presence in the soil, corresponding to remediation time of 5 years if all organs are removed. As soil microorganisms are known to mediate many interactions between earthworms and plants, we documented the effect of earthworms on the bacterial community of root-adhering soil of L. camara. Cultivable bacterial biomass of root-adhering soil increased in the presence of earthworms. Similar trend was observed on bacterial metabolic activities. The increase of lead concentrations from 500 to 1000mgkg(-1) did not have any significant effect either on plant growth or on bacterial biomass and global activities but affected the structure and functional diversity of the bacterial community. These results showed that we should broaden the ecological context of phytoremediation by considering plant/microbial community/earthworm interactions that influence the absorption of heavy metals.


Insectes Sociaux | 2009

Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis

Thomas Lefebvre; Edouard Miambi; Anne Pando; Michel Diouf; Corinne Rouland-Lefèvre

This comprehensive survey studied the actinobacterial community structure and putative representative members associated with the gut of the wood-feeding termite, Nasutitermes corniger (Motschulsky), using nested PCR-DGGE and 16S rDNA sequences analyses. The closest relatives of the actinobacteria inhabiting the gut of Nasutitermes corniger were in five families, regardless of the geographical origin of the termite colony: Propionibacteriaceae, Streptomycetaceae, Cellulomonodaceae, Corynebacteriaceae and Rubrobacteraceae. Feeding termites on beech wood did not result in substantial changes in the actinobacterial community structure as revealed by DGGE banding patterns. Most of the 16S rDNA sequences obtained after excision and sequencing of DGGE bands clustered with those previously retrieved in termite guts. These results confirm the presence of gut-specific actinobacteria. Except for the 16S rDNA sequences affiliated to Streptomycetaceae and Cellulomonodaceae, no sequence had more than 97% similarity with the closest isolated strains, indicating the presence of microorganisms that have not yet been cultivated. These results suggest that members of the Actinomycetales order account for the largest proportion of the Actinobacteria phylum inhabiting the gut of the termite N. corniger.


Mycologia | 2009

Molecular diversity and host specificity of termite-associated Xylaria

Herbert J. Guedegbe; Edouard Miambi; Anne Pando; Pascal Houngnandan; Corinne Rouland-Lefèvre

Studies have revealed that some Xylaria species were closely associated with fungus-growing termite nests. However this relationship rarely had been investigated and the host specificity of termite-associated Xylaria was not yet clearly established. Eighteen Xylaria rDNA-ITS sequences were obtained from fungus combs belonging to 11 Macrotermitinae species from eight regions. Low diversity was found between isolates, and nine sequences were retrieved. Termite-associated Xylaria were shown to be monophyletic, with three main clades, all including strains from various termite hosts and geographical localities. This new molecular study shows no species specificity with respect to fungus-growing termites, which suggests that there might be substrate specialization.


PLOS ONE | 2015

Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing.

Michel Diouf; Virginie Roy; Philippe Mora; Sophie Frechault; Thomas Lefebvre; Vincent Hervé; Corinne Rouland-Lefèvre; Edouard Miambi

Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers.


Bioenergy Research | 2013

Overview of the Oldest Existing Set of Substrate-optimized Anaerobic Processes: Digestive Tracts

Jean-Jacques Godon; Laure Arcemisbehere; Renaud Escudié; Jérôme Harmand; Edouard Miambi; Jean-Philippe Steyer

Over millions of years, living organisms have explored and optimized the digestion of a wide variety of substrates. Engineers who develop anaerobic digestion processes for waste treatment and energy production can learn much from this accumulated ‘experience’. The aim of this work is a survey based on the comparison of 190 digestive tracts (vertebrate and insect) considered as ‘reactors’ and their anaerobic processes. Within a digestive tract, each organ is modeled as a type of reactor (continuous stirred-tank, such reactors in series, plug-flow or batch) associated with chemical aspects such as pH or enzymes. Based on this analysis, each complete digestion process has been rebuilt and classified in accordance with basic structures which take into account the relative size of the different reactors. The results show that all animal digestive structures can be grouped within four basic types. Size and/or position in the structure of the different reactors (pre/post treatment and anaerobic microbial digestion) are closely correlated to the degradability of the feed (substrate). Major common features are: (i) grinding, (ii) an extreme pH compartment, and (iii) correlation between the size of the microbial compartment and the degradability of the feed. Thus, shared answers found by animals during their evolution can be a source of inspiration for engineers in designing optimal anaerobic processes.


Frontiers in Microbiology | 2017

Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors

Lucas Auer; Adèle Lazuka; David Sillam-Dussès; Edouard Miambi; Michael J. O'Donohue; Guillermina Hernandez-Raquet

Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules.


PLOS ONE | 2015

Nitrous Oxide (N2O) Emissions by Termites: Does the Feeding Guild Matter?

Alain Brauman; Muhammad Zeeshan Majeed; Bruno Buatois; Alain Robert; Anne-Laure Pablo; Edouard Miambi

In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O). Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d-1 (g dry wt.)-1 for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d-1 (g dry wt.)-1 for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d-1 (g dry wt.)-1. Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA) and denitrifying (nirK, nirS, nosZ) gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.


Folia Microbiologica | 2015

Characterization of N2O emission and associated bacterial communities from the gut of wood-feeding termite Nasutitermes voeltzkowi

Muhammad Zeeshan Majeed; Edouard Miambi; Muhammad Asam Riaz; Alain Brauman

Xylophagous termites rely on nitrogen deficient foodstuff with a low C/N ratio. Most research work has focused on nitrogen fixation in termites highlighting important inflow and assimilation of atmospheric nitrogen into their bodies fundamentally geared up by their intestinal microbial symbionts. Most of termite body nitrogen is of atmospheric origin, and microbially aided nitrification is the principal source of this nitrogen acquisition, but contrarily, the information regarding potent denitrification process is very scarce and poorly known, although the termite gut is considered to carry all favorable criteria necessary for microbial denitrification. Therefore, in this study, it is hypothesized that whether nitrification and denitrification processes coexist in intestinal milieu of xylophagous termites or not, and if yes, then is there any link between the denitrification product, i.e., N2O and nitrogen content of the food substrate, and moreover where these bacterial communities are found along the length of termite gut. To answer these questions, we measured in vivo N2O emission by Nasutitermes voeltzkowi (Nasutitermitinae) maintained on different substrates with varying C/N ratio, and also, molecular techniques were applied to study the diversity (DGGE) and density (qPCR) of bacterial communities in anterior and posterior gut portions. Rersults revealed that xylophagous termites emit feeble amount of N2O and molecular studies confirmed this finding by illustrating the presence of an ample density of N2O-reductase (nosZ) gene in the intestinal tract of these termites. Furthermore, intestinal bacterial communities of these termites were found more dense and diverse in posterior than anterior portion of the gut.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2018

Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae)

Michel Diouf; Vincent Hervé; Philippe Mora; Alain Robert; Sophie Frechault; Corinne Rouland-Lefèvre; Edouard Miambi

Studies on termite symbiosis have revealed that significant symbiont lineages are maintained across generations. However, most studies have focused only on the worker caste. Little is known about the gut microbiota of reproductives, the most probable vectors for transmitting these lineages to offspring. Using 16S rRNA gene-based Illumina MiSeq sequencing, we compared the gut microbiota of swarming alates of the higher termite Nasutitermes arborum with those of their nestmates from the parental colony. The OTU-based alpha diversity indices showed that the gut microbiota of the alates was at least as diverse as those of non-reproductive adults. It was largely dominated by Spirochaetes mostly of the Treponema I cluster (63.1% of reads), the same dominant taxa found in soldiers and workers of this species and in workers of closely related Nasutitermes species. The termite-specific lineages also included other representative taxa such as several clusters of Bacteroidetes and Fibrobacteres-TG3 group. The microbiota of alates was dominated by a core set of host-specific lineages (87% of reads, 77.6% of OTUs), which were always present across all castes/stages. This first comprehensive survey of the microbiota of the founding reproductives of these xylophagous higher termites shows that the bulk of the host endogenous symbionts, mostly taxa that cannot thrive outside the gut, are brought from the parent colony. The royal pair therefore seems to be a key player in the transmission of symbionts across generations and thereby in host-symbiont codiversification. The high proportion of fiber-degrading lineages in their gut suggests a wood-rich diet unlike the larval stages.

Collaboration


Dive into the Edouard Miambi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corinne Rouland-Lefèvre

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Alain Robert

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Jacques Godon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Steyer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renaud Escudié

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Brauman

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Alain Guillot

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge