Edson Luiz Silva
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edson Luiz Silva.
Bioresource Technology | 2010
Lorena Lima de Oliveira; Rachel Biancalana Costa; Dagoberto Yukio Okada; Daniele Vital Vich; Iolanda Cristina Silveira Duarte; Edson Luiz Silva; Maria Bernadete Amâncio Varesche
Four anaerobic fluidized bed reactors filled with activated carbon (R1), expanded clay (R2), glass beads (R3) and sand (R4) were tested for anaerobic degradation of LAS. All reactors were inoculated with sludge from a UASB reactor treating swine wastewater and were fed with a synthetic substrate supplemented with approximately 20 mg l(-1) of LAS, on average. To 560 mg l(-1) COD influent, the maximum COD and LAS removal efficiencies were mean values of 97+/-2% and 99+/-2%, respectively, to all reactors demonstrating the potential applicability of this reactor configuration for treating LAS. The reactors were kept at 30 degrees C and operated with a hydraulic retention time (HRT) of 18h. The use of glass beads and sand appear attractive because they favor the development of biofilms capable of supporting LAS degradation. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of samples from reactors R3 and R4 revealed that these reactors gave rise to broad microbial diversity, with microorganisms belonging to the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria, indicating the role of microbial consortia in degrading the surfactant LAS.
Bioresource Technology | 2014
Paula Rúbia Ferreira Rosa; Samantha Christine Santos; Isabel Kimiko Sakamoto; Maria Bernadete Amâncio Varesche; Edson Luiz Silva
The effects of different hydraulic retention times (HRTs) of 4, 2, and 1h and varying sources of inoculum (sludge from swine and sludge from poultry) on the hydrogen production in two anaerobic fluidized bed reactors (AFBRs) were evaluated. Cheese whey was used as a substrate, and 5000mgCODL(-1) was applied. The highest hydrogen yield (HY) of 1.33molmol(-1) lactose and highest ethanol yield (EtOHY) of 1.22molEtOHmol(-1) lactose were obtained at the highest HRT (4h). When the reactors were operated at an HRT of 1h, methane (0.68LCH4h(-1)L(-1)) was produced concurrently with hydrogen (0.51LH2h(-1)L(-1)). The major metabolites observed were soluble ethanol, methanol, acetic acid, and butyric acid. Cloning of the 16S rRNA gene sequences indicated that the microbial community were affiliated with the genera Selenomonas sp. (69% of the sequences), and Methanobacterium sp. (98% of the sequences).
Bioresource Technology | 2011
Aruana Rocha Barros; Maria Angela Tallarico Adorno; Isabel Kimiko Sakamoto; Sandra Imaculada Maintinguer; Maria Bernadete Amâncio Varesche; Edson Luiz Silva
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter.
Bioresource Technology | 2014
Samantha Christine Santos; Paula Rúbia Ferreira Rosa; Isabel Kimiko Sakamoto; Maria Bernadete Amâncio Varesche; Edson Luiz Silva
This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.).
Bioresource Technology | 2014
Mariana Fronja Carosia; Dagoberto Yukio Okada; Isabel Kimiko Sakamoto; Edson Luiz Silva; Maria Bernadete Amâncio Varesche
The aim of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) in an anaerobic fluidized bed reactor (AFBR) treating wastewater containing soap powder as LAS source. At Stage I, the AFBR was fed with a synthetic substrate containing yeast extract and ethanol as carbon sources, and without LAS; at Stage II, soap powder was added to this synthetic substrate obtaining an LAS concentration of 14 ± 3 mg L(-1). The compounds of soap powder probably inhibited some groups of microorganisms, increasing the concentration of volatile fatty acids (VFA) from 91 to 143 mg HAc L(-1). Consequently, the LAS removal rate was 48 ± 10% after the 156 days of operation. By sequencing, 16S rRNA clones belonging to the phyla Proteobacteria and Synergistetes were identified in the samples taken at the end of the experiment, with a remarkable presence of Dechloromonas sp. and Geobacter sp.
Science of The Total Environment | 2014
Fabrício Motteran; Juliana Kawanishi Braga; Isabel Kimiko Sakamoto; Edson Luiz Silva; Maria Bernadete Amâncio Varesche
The removal and degradation of the nonionic surfactant linear alcohol ethoxylate (LAE)Genapol® C-100 in an anaerobic fluidized bed reactor were evaluated with 4.7 mg LAE/L to 107.4 mg LAE/L added to the synthetic substrate (535 ± 121 mg/L to 882 ± 126 mg/L of organic matter). High removal efficiencies of the COD (chemical oxygen demand) (88%) and LAE (98%) were observed even at high surfactant concentrations during the 492 days of operation. The absence of sucrose in the synthetic substrate modified the microbial community. Similarity coefficients between the phases with sucrose and without sucrose were 74% and 59% for the Archaea and Bacteria domains, respectively. The higher LAE removal (98%) was obtained for the 97.9 mg LAE/L influent in the absence of the co-substrate, as well as the greater diversity of volatile fatty acid. At the end of the reactor operation 2.05 mg of LAE was adsorbed in the biomass and 98.5% was biodegraded.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2013
Laura M. Siqueira; Elisabeth S.G. Damiano; Edson Luiz Silva
This study evaluated an anaerobic fluidized bed reactor (AFBR) that contained polystyrene particles as a support material for the treatment of vinasse that resulted from the alcoholic fermentation of sugarcane molasses. The AFBR was inoculated with sludge from an upflow anaerobic sludge blanket reactor that treated poultry slaughterhouse wastewater. The AFBR was operated with a hydraulic retention time of 24 h at a temperature of 30°C with influent vinasse concentrations that ranged from 2273 to 20,073 mg COD L−1. The reactor was subjected to increased organic loading rates (OLR) that ranged from 3.33 to 26.19 kg COD m−3 d−1, with COD removal efficiencies that ranged from 51% to 70% and maximum removal at an OLR of 13.93 ± 2.18 kg COD m−3 d−1. The maximum biogas productivity was 5.37 m3 CH4 m−3 d−1 for an OLR of 25.32 kg COD m−3 d−1 (average removal of 51%).,
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2015
Juliana Kawanishi Braga; Fabrício Motteran; T. Z. Macedo; Isabel Kimiko Sakamoto; Tiago Palladino Delforno; Dagoberto Yukio Okada; Edson Luiz Silva; Maria Bernadete Amâncio Varesche
The biodegradation of linear alkylbenzene sulfonate (LAS) from commercial laundry wastewater was evaluated in an anaerobic fluidized bed reactor (FBR) fed with synthetic substrate (598 mg L−1 to 723 mg L−1 of organic matter) supplemented with 9.5 ± 3.1 mg L−1 to 27.9 ± 9.6 mg L−1 of LAS. The average chemical oxygen demand (COD) removal efficiency was 89% and the biodegradation of LAS was 57% during the 489 days of anaerobic FBR. Higher levels of volatile fatty acids (VFA) were observed in the effluent at the stage with the best LAS removal performance. Increasing the surfactant concentration did not increase the VFA production in the effluent. The predominant VFAs after the addition of LAS were as follows: isovaleric acid and valeric acid, followed by propionic acid, caproic acid and formic acid. The similarities of 64% and 45% to Archaea and Bacteria domains were observed in the samples taken in the operating period of anaerobic FBR fed with 23.6 ± 10 mg L−1 and 27.9 ± 10 mg L−1 of LAS. During the operation stages in the reactor, Gemmatimonas, Desulfobulbus and Zoogloea were determined as the most abundant genera related to surfactant degradation using 454-Pyrosequencing.
Brazilian Journal of Chemical Engineering | 2013
Lorena Lima de Oliveira; Rachel Biancalana Costa; Isabel Kimiko Sakamoto; Iolanda Cristina Silveira Duarte; Edson Luiz Silva; M. B. A. Varesche
A fluidized bed reactor was used to study the degradation of the surfactant linear alkylbenzene sulfonate (LAS). The reactor was inoculated with anaerobic sludge and was fed with a synthetic substrate supplemented with LAS in increasing concentrations (8.2 to 45.8 mg l-1). The removal efficiency of 93% was obtained after 270 days of operation. Subsequently, 16S rRNA gene sequencing and phylogenetic analysis of the sample at the last stage of the reactor operation recovered 105 clones belonging to the domain Bacteria. These clones represented a variety of phyla with significant homology to Bacteroidetes (40%), Proteobacteria (42%), Verrucomicrobia (4%), Acidobacteria (3%), Firmicutes (2%), and Gemmatimonadetes (1%). A small fraction of the clones (8%) was not related to any phylum. Such phyla variety indicated the role of microbial consortia in degrading the surfactant LAS.
Brazilian Journal of Chemical Engineering | 2012
G.P. Sancinetti; Leandro Takano Sader; M. B. A. Varesche; Eduardo Lucena Cavalcante de Amorim; S. P. F. Omena; Edson Luiz Silva
Abstract - The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR) packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate – PET, and polyvinyl chloride - PVC). The reactors were operated with a hydraulic retention time (HRT) of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L -1 , resulting in phenol removal efficiencies of ~100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L -1 . The phenol removal efficiency ranged from 90-100%. Keywords : Phenol; Anaerobic fluidized bed reactor; Biofilm; Polymeric particles.