Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduan Wilkinson is active.

Publication


Featured researches published by Eduan Wilkinson.


Infection, Genetics and Evolution | 2009

Molecular characterization of non-subtype C and recombinant HIV-1 viruses from Cape Town, South Africa

Eduan Wilkinson; Susan Engelbrecht

HIV was first diagnosed within South Africa in 1982. Homosexual transmission of HIV-1 dominated the epidemic within the country in the early stages of the 1980s. Currently heterosexual transmission of HIV-1 is responsible for the majority of HIV cases in South Africa with subtype C HIV-1 being responsible for an estimated 95% of infections. Only a few papers have been published on non-subtype C HIV-1 detection within South Africa. This study characterized subgenomic and near full-length sequences of non-subtype C HIV-1 viruses from the Cape Town area. Amplification and direct sequencing characterized partial gene fragments of 11 samples. Phylogenetic analysis of the sequenced data, with online subtyping tools (REGA and jpHMM) and the drawing of NJ-trees revealed the presence of subtypes A1, B, and F1 as well as recombinant viral forms such as AD, AG and AC. Near full-length genome characterization of 4 of the 11 samples was performed. Analysis of sequenced data with the use of subtyping, recombination identification, and tree drawing tools revealed one subtype B and one A1 isolate. The other two isolates were identified as AC and AD recombinants. The data that was gathered will greatly improve our knowledge of non-subtype C isolates circulating within South Africa.


Viruses | 2015

Identifying recent HIV infections : from serological assays to genomics

Sikhulile Moyo; Eduan Wilkinson; Vladimir Novitsky; Alain Vandormael; Simani Gaseitsiwe; Max Essex; Susan Engelbrecht; Tulio de Oliveira

In this paper, we review serological and molecular based methods to identify HIV infection recency. The accurate identification of recent HIV infection continues to be an important research area and has implications for HIV prevention and treatment interventions. Longitudinal cohorts that follow HIV negative individuals over time are the current gold standard approach, but they are logistically challenging, time consuming and an expensive enterprise. Methods that utilize cross-sectional testing and biomarker information have become an affordable alternative to the longitudinal approach. These methods use well-characterized biological makers to differentiate between recent and established HIV infections. However, recent results have identified a number of limitations in serological based assays that are sensitive to the variability in immune responses modulated by HIV subtypes, viral load and antiretroviral therapy. Molecular methods that explore the dynamics between the timing of infection and viral evolution are now emerging as a promising approach. The combination of serological and molecular methods may provide a good solution to identify recent HIV infection in cross-sectional data. As part of this review, we present the advantages and limitations of serological and molecular based methods and their potential complementary role for the identification of HIV infection recency.


PLOS ONE | 2014

HIV-1 subtypes B and C Unique Recombinant Forms (URFs) and transmitted drug resistance identified in the Western Cape Province, South Africa

Graeme Brendon Jacobs; Eduan Wilkinson; Shahieda Isaacs; Georgina Spies; Tulio de Oliveira; Soraya Seedat; Susan Engelbrecht

South Africa has the largest worldwide HIV/AIDS population with 5.6 million people infected and at least 2 million people on antiretroviral therapy. The majority of these infections are caused by HIV-1 subtype C. Using genotyping methods we characterized HIV-1 subtypes of the gag p24 and pol PR and RT fragments, from a cohort of female participants in the Western Cape Province, South Africa. These participants were recruited as part of a study to assess the combined brain and behavioural effects of HIV and early childhood trauma. The partial HIV-1 gag and pol fragments of 84 participants were amplified by PCR and sequenced. Different online tools and manual phylogenetic analysis were used for HIV-1 subtyping. Online tools included: REGA HIV Subtyping tool version 3; Recombinant Identification Program (RIP); Context-based Modeling for Expeditious Typing (COMET); jumping profile Hidden Markov Models (jpHMM) webserver; and subtype classification using evolutionary algorithms (SCUEAL). HIV-1 subtype C predominates within the cohort with a prevalence of 93.8%. We also show, for the first time, the presence of circulating BC strains in at least 4.6% of our study cohort. In addition, we detected transmitted resistance associated mutations in 4.6% of analysed sequences. With tourism and migration rates to South Africa currently very high, we are detecting more and more HIV-1 URFs within our study populations. It is stil unclear what role these unique strains will play in terms of long term antiretroviral treatment and what challenges they will pose to vaccine development. Nevertheless, it remains vitally important to monitor the HIV-1 diversity in South Africa and worldwide as the face of the epidemic is continually changing.


Journal of Virology | 2017

Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo

Mary A. Rodgers; Eduan Wilkinson; Ana Vallari; Carole P. McArthur; Larry Sthreshley; Catherine A. Brennan; Gavin Cloherty; Tulio de Oliveira

ABSTRACT As the epidemiological epicenter of the human immunodeficiency virus (HIV) pandemic, the Democratic Republic of the Congo (DRC) is a reservoir of circulating HIV strains exhibiting high levels of diversity and recombination. In this study, we characterized HIV specimens collected in two rural areas of the DRC between 2001 and 2003 to identify rare strains of HIV. The env gp41 region was sequenced and characterized for 172 HIV-positive specimens. The env sequences were predominantly subtype A (43.02%), but 7 other subtypes (33.14%), 20 circulating recombinant forms (CRFs; 11.63%), and 20 unclassified (11.63%) sequences were also found. Of the rare and unclassified subtypes, 18 specimens were selected for next-generation sequencing (NGS) by a modified HIV-switching mechanism at the 5′ end of the RNA template (SMART) method to obtain full-genome sequences. NGS produced 14 new complete genomes, which included pure subtype C (n = 2), D (n = 1), F1 (n = 1), H (n = 3), and J (n = 1) genomes. The two subtype C genomes and one of the subtype H genomes branched basal to their respective subtype branches but had no evidence of recombination. The remaining 6 genomes were complex recombinants of 2 or more subtypes, including subtypes A1, F, G, H, J, and K and unclassified fragments, including one subtype CRF25 isolate, which branched basal to all CRF25 references. Notably, all recombinant subtype H fragments branched basal to the H clade. Spatial-geographical analysis indicated that the diverse sequences identified here did not expand globally. The full-genome and subgenomic sequences identified in our study population significantly increase the documented diversity of the strains involved in the continually evolving HIV-1 pandemic. IMPORTANCE Very little is known about the ancestral HIV-1 strains that founded the global pandemic, and very few complete genome sequences are available from patients in the Congo Basin, where HIV-1 expanded early in the global pandemic. By sequencing a subgenomic fragment of the HIV-1 envelope from study participants in the DRC, we identified rare variants for complete genome sequencing. The basal branching of some of the complete genome sequences that we recovered suggests that these strains are more closely related to ancestral HIV-1 strains than to previously reported strains and is evidence that the local diversification of HIV in the DRC continues to outpace the diversity of global strains decades after the emergence of the pandemic.


PLOS ONE | 2016

Analysis of Viral Diversity in Relation to the Recency of HIV-1C Infection in Botswana

Sikhulile Moyo; Alain Vandormael; Eduan Wilkinson; Susan Engelbrecht; Simani Gaseitsiwe; Kenanao P. Kotokwe; Rosemary Musonda; Frank Tanser; Max Essex; Vladimir Novitsky; Tulio de Oliveira

Background Cross-sectional, biomarker methods to determine HIV infection recency present a promising and cost-effective alternative to the repeated testing of uninfected individuals. We evaluate a viral-based assay that uses a measure of pairwise distances (PwD) to identify HIV infection recency, and compare its performance with two serologic incidence assays, BED and LAg. In addition, we assess whether combination BED plus PwD or LAg plus PwD screening can improve predictive accuracy by reducing the likelihood of a false-recent result. Methods The data comes from 854 time-points and 42 participants enrolled in a primary HIV-1C infection study in Botswana. Time points after treatment initiation or with evidence of multiplicity of infection were excluded from the final analysis. PwD was calculated from quasispecies generated using single genome amplification and sequencing. We evaluated the ability of PwD to correctly classify HIV infection recency within <130, <180 and <360 days post-seroconversion using Receiver Operator Characteristics (ROC) methods. Following a secondary PwD screening, we quantified the reduction in the relative false-recency rate (rFRR) of the BED and LAg assays while maintaining a sensitivity of either 75, 80, 85 or 90%. Results The final analytic sample consisted of 758 time-points from 40 participants. The PwD assay was more accurate in classifying infection recency for the 130 and 180-day cut-offs when compared with the recommended LAg and BED thresholds. A higher AUC statistic confirmed the superior predictive performance of the PwD assay for the three cut-offs. When used for combination screening, the PwD assay reduced the rFRR of the LAg assay by 52% and the BED assay by 57.8% while maintaining a 90% sensitivity for the 130 and 180-day cut-offs respectively. Conclusion PwD can accurately determine HIV infection recency. A secondary PwD screening reduces misclassification and increases the accuracy of serologic-based assays.


Scientific Reports | 2015

History and origin of the HIV-1 subtype C epidemic in South Africa and the greater southern African region.

Eduan Wilkinson; Susan Engelbrecht; Tulio de Oliveira

HIV has spread at an alarming rate in South Africa, making it the country with the highest number of HIV infections. Several studies have investigated the histories of HIV-1 subtype C epidemics but none have done so in the context of social and political transformation in southern Africa. There is a need to understand how these processes affects epidemics, as socio-political transformation is a common and on-going process in Africa. Here, we genotyped strains from the start of the epidemic and applied phylodynamic techniques to determine the history of the southern Africa and South African epidemic from longitudinal sampled data. The southern African epidemic’s estimated dates of origin was placed around 1960 (95% HPD 1956–64), while dynamic reconstruction revealed strong growth during the 1970s and 80s. The South African epidemic has a similar origin, caused by multiple introductions from neighbouring countries, and grew exponentially during the 1980s and 90s, coinciding with socio-political changes in South Africa. These findings provide an indication as to when the epidemic started and how it has grown, while the inclusion of sequence data from the start of the epidemic provided better estimates. The epidemic have stabilized in recent years with the expansion of antiretroviral therapy.


PLOS ONE | 2016

Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance

Robert A. Power; Siva Davaniah; Anne Derache; Eduan Wilkinson; Frank Tanser; Ravindra K. Gupta; Deenan Pillay; Tulio de Oliveira

Background Genome-wide association studies (GWAS) have considerably advanced our understanding of human traits and diseases. With the increasing availability of whole genome sequences (WGS) for pathogens, it is important to establish whether GWAS of viral genomes could reveal important biological insights. Here we perform the first proof of concept viral GWAS examining drug resistance (DR), a phenotype with well understood genetics. Method We performed a GWAS of DR in a sample of 343 HIV subtype C patients failing 1st line antiretroviral treatment in rural KwaZulu-Natal, South Africa. The majority and minority variants within each sequence were called using PILON, and GWAS was performed within PLINK. HIV WGS from patients failing on different antiretroviral treatments were compared to sequences derived from individuals naïve to the respective treatment. Results GWAS methodology was validated by identifying five associations on a genetic level that led to amino acid changes known to cause DR. Further, we highlighted the ability of GWAS to identify epistatic effects, identifying two replicable variants within amino acid 68 of the reverse transcriptase protein previously described as potential fitness compensatory mutations. A possible additional DR variant within amino acid 91 of the matrix region of the Gag protein was associated with tenofovir failure, highlighting GWAS’s ability to identify variants outside classical candidate genes. Our results also suggest a polygenic component to DR. Conclusions These results validate the applicability of GWAS to HIV WGS data even in relative small samples, and emphasise how high throughput sequencing can provide novel and clinically relevant insights. Further they suggested that for viruses like HIV, population structure was only minor concern compared to that seen in bacteria or parasite GWAS. Given the small genome length and reduced burden for multiple testing, this makes HIV an ideal candidate for GWAS.


Infection, Genetics and Evolution | 2016

Origin, imports and exports of HIV-1 subtype C in South Africa: A historical perspective

Eduan Wilkinson; David A. Rasmussen; Oliver Ratmann; Tanja Stadler; Susan Engelbrecht; Tulio de Oliveira

BACKGROUND While the HIV epidemic in South Africa had a later onset than epidemics in other southern African countries, prevalence grew rapidly during the 1990s when the country was going through socio-political changes with the end of Apartheid. South Africa currently has the largest number of people living with HIV in the world and the epidemic is dominated by a unique subtype, HIV-1 subtype C. This large epidemic is also characterized by high level of genetic diversity. We hypothesize that this diversity is due to multiple introductions of the virus during the period of change. In this paper, we apply novel phylogeographic methods to estimate the number of viral imports and exports from the start of the epidemic to the present. METHODS We assembled 11,289 unique subtype C pol sequences from southern Africa. These represent one of the largest sequence datasets ever analyzed in the region. Sequences were stratified based on country of sampling and levels of genetic diversity were estimated for each country. Sequences were aligned and a maximum-likelihood evolutionary tree was inferred. Least-Squares Dating was then used to obtain a dated phylogeny from which we estimated the number of introductions into and exports out of South Africa using parsimony-based ancestral location reconstructions. RESULTS Our results identified 189 viral introductions into South Africa with the largest number of introductions attributed to Zambia (n=109), Botswana (n=32), Malawi (n=26) and Zimbabwe (n=13). South Africa also exported many viral lineages to its neighbours. The bulk viral imports and exports appear to have occurred between 1985 and 2000, coincident with the period of socio-political transition. CONCLUSION The high level of subtype C genetic diversity in South Africa is related to multiple introductions of the virus to the country. While the number of viral imports and exports we identified was highly sensitive to the number of samples included from each country, they mostly clustered around the period of rapid political and socio-economic change in South Africa.


PLOS ONE | 2014

Detection of Transmission Clusters of HIV-1 Subtype C over a 21-Year Period in Cape Town, South Africa

Eduan Wilkinson; Susan Engelbrecht; Tulio de Oliveira

Introduction Despite recent breakthroughs in the fight against the HIV/AIDS epidemic within South Africa, the transmission of the virus continues at alarmingly high rates. It is possible, with the use of phylogenetic methods, to uncover transmission events of HIV amongst local communities in order to identify factors that may contribute to the sustained transmission of the virus. The aim of this study was to uncover transmission events of HIV amongst the infected population of Cape Town. Methods and Results We analysed gag p24 and RT-pol sequences which were generated from samples spanning over 21-years with advanced phylogenetic techniques. We identified two transmission clusters over a 21-year period amongst randomly sampled patients from Cape Town and the surrounding areas. We also estimated the origin of each of the identified transmission clusters with the oldest cluster dating back, on average, 30 years and the youngest dating back roughly 20 years. Discussion and Conclusion These transmission clusters represent the first identified transmission events among the heterosexual population in Cape Town. By increasing the number of randomly sampled specimens within a dataset over time, it is possible to start to uncover transmission events of HIV amongst local communities in generalized epidemics. This information can be used to produce targeted interventions to decrease transmission of HIV in Africa.


AIDS Research and Human Retroviruses | 2015

Sequencing and Phylogenetic Analysis of Near Full-Length HIV-1 Subtypes A, B, G and Unique Recombinant AC and AD Viral Strains Identified in South Africa

Eduan Wilkinson; Vera Holzmayer; Graeme Brendon Jacobs; Tulio de Oliveira; Catherine A. Brennan; John Hackett; Estrelita Janse van Rensburg; Susan Engelbrecht

Abstract By the end of 2012, more than 6.1 million people were infected with HIV-1 in South Africa. Subtype C was responsible for the majority of these infections and more than 300 near full-length genomes (NFLGs) have been published. Currently very few non-subtype C isolates have been identified and characterized within the country, particularly full genome non-C isolates. Seven patients from the Tygerberg Virology (TV) cohort were previously identified as possible non-C subtypes and were selected for further analyses. RNA was isolated from five individuals (TV047, TV096, TV101, TV218, and TV546) and DNA from TV016 and TV1057. The NFLGs of these samples were amplified in overlapping fragments and sequenced. Online subtyping tools REGA version 3 and jpHMM were used to screen for subtypes and recombinants. Maximum likelihood (ML) phylogenetic analysis (phyML) was used to infer subtypes and SimPlot was used to confirm possible intersubtype recombinants. We identified three subtype B (TV016, TV047, and TV1057) isolates, one subtype A1 (TV096), one subtype G (TV546), one unique AD (TV101), and one unique AC (TV218) recombinant form. This is the first NFLG of subtype G that has been described in South Africa. The subtype B sequences described also increased the NFLG subtype B sequences in Africa from three to six. There is a need for more NFLG sequences, as partial HIV-1 sequences may underrepresent viral recombinant forms. It is also necessary to continue monitoring the evolution and spread of HIV-1 in South Africa, because understanding viral diversity may play an important role in HIV-1 prevention strategies.

Collaboration


Dive into the Eduan Wilkinson's collaboration.

Top Co-Authors

Avatar

Tulio de Oliveira

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Vandormael

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar

Frank Tanser

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge