Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduard Bardají is active.

Publication


Featured researches published by Eduard Bardají.


Journal of Biological Chemistry | 2010

Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides, BP100 and pepR

Carla S. Alves; Manuel N. Melo; Henri G. Franquelim; Rafael Ferre; Marta Planas; Lidia Feliu; Eduard Bardají; Wioleta Kowalczyk; David Andreu; Nuno C. Santos; Miguel X. Fernandes; Miguel A. R. B. Castanho

The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the Gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic Gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMP is not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred.


Peptides | 2007

A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria

Esther Badosa; Rafael Ferre; Marta Planas; Lidia Feliu; Emili Besalú; Jordi Cabrefiga; Eduard Bardají; Emilio Montesinos

A 125-member library of synthetic linear undecapeptides was prepared based on a previously described peptide H-K(1)KLFKKILKF(10)L-NH(2) (BP76) that inhibited in vitro growth of the plant pathogenic bacteria Erwinia amylovora, Xanthomonas axonopodis pv. vesicatoria, and Pseudomonas syringae pv. syringae at low micromolar concentrations. Peptides were designed using a combinatorial chemistry approach by incorporating amino acids possessing various degrees of hydrophobicity and hydrophilicity at positions 1 and 10 and by varying the N-terminus. Library screening for in vitro growth inhibition identified 27, 40 and 113 sequences with MIC values below 7.5 microM against E. amylovora, P. syringae and X. axonopodis, respectively. Cytotoxicity, bactericidal activity and stability towards protease degradation of the most active peptides were also determined. Seven peptides with a good balance between antibacterial and hemolytic activities were identified. Several analogues displayed a bactericidal effect and low susceptibility to protease degradation. The most promising peptides were tested in vivo by evaluating their preventive effect of inhibition of E. amylovora infection in detached apple and pear flowers. The peptide H-KKLFKKILKYL-NH(2) (BP100) showed efficacies in flowers of 63-76% at 100 microM, being more potent than BP76 and only less effective than streptomycin, currently used for fire blight control.


Applied and Environmental Microbiology | 2006

Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides

Rafael Ferre; Esther Badosa; Lidia Feliu; Marta Planas; Emili Montesinos; Eduard Bardají

ABSTRACT Short peptides of 11 residues were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae, and Xanthomonas vesicatoria and compared to the previously described peptide Pep3 (WKLFKKILKVL-NH2). The antimicrobial activity of Pep3 and 22 analogues was evaluated in terms of the MIC and the 50% effective dose (ED50) for growth. Peptide cytotoxicity against human red blood cells and peptide stability toward protease degradation were also determined. Pep3 and several analogues inhibited growth of the three pathogens and had a bactericidal effect at low micromolar concentrations (ED50 of 1.3 to 7.3 μM). One of the analogues consisting of a replacement of both Trp and Val with Lys and Phe, respectively, resulted in a peptide with improved bactericidal activity and minimized cytotoxicity and susceptibility to protease degradation compared to Pep3. The best analogues can be considered as potential lead compounds for the development of new antimicrobial agents for use in plant protection either as components of pesticides or expressed in transgenic plants.


Biophysical Journal | 2009

Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100.

Rafael Ferre; Manuel N. Melo; Ana D. Correia; Lidia Feliu; Eduard Bardají; Marta Planas; Miguel A. R. B. Castanho

BP100 (KKLFKKILKYL-NH(2)) is a short cecropin A-melittin hybrid peptide, obtained through a combinatorial chemistry approach, which is highly effective in inhibiting both the in vitro and in vivo growth of economically important plant pathogenic Gram-negatives. The intrinsic Tyr fluorescence of BP100 was taken advantage of to study the peptides binding affinity and damaging effect on phospholipid bilayers modeling the bacterial and mammalian cytoplasmic membranes. In vitro cytotoxic effects of this peptide were also studied on mammalian fibroblast cells. Results show a stronger selectivity of BP100 toward anionic bacterial membrane models as indicated by the high obtained partition constants, one order of magnitude greater than for the neutral mammalian membrane models. For the anionic systems, membrane saturation was observed at high peptide/lipid ratios and found to be related with BP100-induced vesicle permeabilization, membrane electroneutrality, and vesicle aggregation. Occurrence of BP100 translocation was unequivocally detected at both high and low peptide/lipid ratios using a novel and extremely simple method. Moreover, cytotoxicity against mammalian models was reached at a concentration considerably higher than the minimum inhibitory concentration. Our findings unravel the relationships among the closely coupled processes of charge neutralization, permeabilization, and translocation in the mechanism of action of antimicrobial peptides.


Peptides | 2006

Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach

Sylvie Monroc; Esther Badosa; Emili Besalú; Marta Planas; Eduard Bardají; Emili Montesinos; Lidia Feliu

Cyclic decapeptides were developed based on the previously reported peptide c(LysLeuLysLeuLysPheLysLeuLysGln). These compounds were active against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae and Xanthomonas vesicatoria. A library of 56 cyclic decapeptides was prepared and screened for antibacterial activity and eukaryotic cytotoxicity, and led to the identification of peptides with improved minimum inhibitory concentration (MIC) against P. syringae (3.1-6.2 microM) and X. vesicatoria (1.6-3.1 microM). Notably, peptides active against E. amylovora (MIC of 12.5-25 microM) were found, constituting the first report of cyclic peptides with activity towards this bacteria. A second library based on the structure c(X(1)X(2)X(3)X(4)LysPheLysLysLeuGln) with X being Lys or Leu yielded peptides with optimized activity profiles. The activity against E. amylovora was further improved (MIC of 6.2-12.5 microM) and the best peptides displayed a low eukaryotic cytotoxicity at concentrations 30-120 times higher than the MIC values. A design of experiments permitted to define rules for high antibacterial activity and low cytotoxicity, being the main rule X(2) not equal X(3), and the secondary rule X(4)=Lys. The best analogs can be considered as good candidates for the development of effective antibacterial agents for use in plant protection.


Chemistry & Biodiversity | 2008

Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control.

Emilio Montesinos; Eduard Bardají

There is a need of antimicrobial compounds in agriculture for plant‐disease control, with low toxicity and reduced negative environmental impact. Antimicrobial peptides are produced by living organisms and offer strong possibilities in agriculture because new compounds can be developed based on natural structures with improved properties of activity, specificity, biodegradability, and toxicity. Design of new molecules has been achieved using combinatorial‐chemistry procedures coupled to high‐throughput screening systems and data processing with design‐of‐experiments (DOE) methodology to obtain QSAR equation models and optimized compounds. Upon selection of best candidates with low cytotoxicity and moderate stability to protease digestion, anti‐infective activity has been evaluated in plant–pathogen model systems. Suitable compounds have been submitted to acute toxicity testing in higher organisms and exhibited a low toxicity profile in a mouse model. Large‐scale production can be achieved by solution organic or chemoenzymatic procedures in the case of very small peptides, but, in many cases, production can be performed by biotechnological methods using genetically modified microorganisms (fermentation) or transgenic crops (plant biofactories).


Peptides | 2006

De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria

Sylvie Monroc; Esther Badosa; Lidia Feliu; Marta Planas; Emili Montesinos; Eduard Bardají

Head-to-tail cyclic peptides of 4-10 residues consisting of alternating hydrophilic (Lys) and hydrophobic (Leu and Phe) amino acids were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Xanthomonas vesicatoria and Pseudomonas syringae. The antibacterial activity, evaluated as the minimal inhibitory concentration (MIC), the cytotoxicity against human red blood cells and stability towards protease degradation were determined. The influence of cyclization, ring size, and replacement of l-Phe with d-Phe on antibacterial and hemolytic activities was studied and correlated with the degree of structuring and hydrophobicity. Our results showed that linear peptides were inactive against the three bacteria tested. Cyclic peptides were active only toward X. vesicatoria and P. syringae, being c(KLKLKFKLKQ) (BPC10L) the most active peptide with MIC values of 6.25 and 12.5 microM, respectively. The improved antibacterial activity of cyclic peptides compared to their linear counterparts was associated to an increase of the hydrophobicity, represented as RP-HPLC retention time (t(R)), and secondary structure content which are related to an enhanced amphipathicity. A decrease of antibacterial and hemolytic activities was observed when a d-Phe was introduced into the cyclic sequences, which was attributed to their low amphipathicity as shown by their low secondary structure content and low t(R). The small size, simple structure, bactericidal effect, and stability to protease degradation of the best peptides make them potential candidates for the development of effective antibacterial agents for use in plant protection.


Applied and Environmental Microbiology | 2009

Sporicidal Activity of Synthetic Antifungal Undecapeptides and Control of Penicillium Rot of Apples

Esther Badosa; Rafael Ferre; J. Francés; Eduard Bardají; Lidia Feliu; Marta Planas; Emilio Montesinos

ABSTRACT The antifungal activity of cecropin A(2-8)-melittin(6-9) hybrid undecapeptides, previously reported as active against plant pathogenic bacteria, was studied. A set of 15 sequences was screened in vitro against Fusarium oxysporum, Penicillium expansum, Aspergillus niger, and Rhizopus stolonifer. Most compounds were highly active against F. oxysporum (MIC < 2.5 μM) but were less active against the other fungi. The best peptides were studied for their sporicidal activity and for Sytox green uptake in F. oxysporum microconidia. A significant inverse linear relationship was observed between survival and fluorescence, indicating membrane disruption. Next, we evaluated the in vitro activity against P. expansum of a 125-member peptide library with the general structure R-X1KLFKKILKX10L-NH2, where X1 and X10 corresponded to amino acids with various degrees of hydrophobicity and hydrophilicity and R included different N-terminal derivatizations. Fifteen sequences with MICs below 12.5 μM were identified. The most active compounds were BP21 {Ac,F,V} and BP34 {Ac,L,V} (MIC < 6.25 μM), where the braces denote R, X1, and X10 positions and where Ac is an acetyl group. The peptides had sporicidal activity against P. expansum conidia. Seven of these peptides were tested in vivo by evaluating their preventative effect of inhibition of P. expansum infection in apple fruits. The peptide Ts-FKLFKKILKVL-NH2 (BP22), where Ts is a tosyl group, was the most active with an average efficacy of 56% disease reduction, which was slightly lower than that of a commercial formulation of the fungicide imazalil.


Biochimica et Biophysica Acta | 2011

Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194.

Jacek T. Mika; Gemma Moiset; Anna D. Cirac; Lidia Feliu; Eduard Bardají; Marta Planas; Durba Sengupta; Siewert J. Marrink; Bert Poolman

We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a β-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides.


Frontiers in Aging Neuroscience | 2016

Amidated and Ibuprofen-Conjugated Kyotorphins Promote Neuronal Rescue and Memory Recovery in Cerebral Hypoperfusion Dementia Model

Sónia Sá Santos; Sara Santos; Antónia R. T. Pinto; Vasanthakumar G. Ramu; Montserrat Heras; Eduard Bardají; Isaura Tavares; Miguel A. R. B. Castanho

Chronic brain ischemia is a prominent risk factor for neurological dysfunction and progression for dementias, including Alzheimer’s disease (AD). In rats, permanent bilateral common carotid artery occlusion (2VO) causes a progressive neurodegeneration in the hippocampus, learning deficits and memory loss as it occurs in AD. Kyotorphin (KTP) is an endogenous antinociceptive dipeptide whose role as neuromodulator/neuroprotector has been suggested. Recently, we designed two analgesic KTP-derivatives, KTP-amide (KTP–NH2) and KTP–NH2 linked to ibuprofen (IbKTP–NH2) to improve KTP brain targeting. This study investigated the effects of KTP-derivatives on cognitive/behavioral functions (motor/spatial memory/nociception) and hippocampal pathology of female rats in chronic cerebral hypoperfusion (2VO-rat model). 2VO-animals were treated with KTP–NH2 or IbKTP–NH2 for 7 days at weeks 2 and 5 post-surgery. After behavioral testing (week 6), coronal sections of hippocampus were H&E-stained or immunolabeled for the cellular markers GFAP (astrocytes) and NFL (neurons). Our findings show that KTP-derivatives, mainly IbKTP–NH2, enhanced cognitive impairment of 2VO-animals and prevented neuronal damage in hippocampal CA1 subfield, suggesting their potential usefulness for the treatment of dementia.

Collaboration


Dive into the Eduard Bardají's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. R. B. Castanho

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregorio Valencia

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Josep Lluís Torres

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Pere Clapés

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge