Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduard Sarró is active.

Publication


Featured researches published by Eduard Sarró.


BioMed Research International | 2014

The Interplay between inflammation and fibrosis in kidney transplantation.

Irina B. Torres; Francesc Moreso; Eduard Sarró; Anna Meseguer; Daniel Serón

Serial surveillance renal allograft biopsies have shown that early subclinical inflammation constitutes a risk factor for the development of interstitial fibrosis. More recently, it has been observed that persistent inflammation is also associated with fibrosis progression and chronic humoral rejection, two histological conditions associated with poor allograft survival. Treatment of subclinical inflammation with steroid boluses prevents progression of fibrosis and preserves renal function in patients treated with a cyclosporine-based regimen. Subclinical inflammation has been reduced after the introduction of tacrolimus based regimens, and it has been shown that immunosuppressive schedules that are effective in preventing acute rejection and subclinical inflammation may prevent the progression of fibrosis and chronic humoral rejection. On the other hand, minimization protocols are associated with progression of fibrosis, and noncompliance with the immunosuppressive regime constitutes a major risk factor for chronic humoral rejection. Thus, adequate immunosuppressive treatment, avoiding minimization strategies and reinforcing educational actions to prevent noncompliance, is at present an effective approach to combat the progression of fibrosis.


Cancer Research | 2014

HAVCR/KIM-1 Activates the IL-6/STAT-3 Pathway in Clear Cell Renal Cell Carcinoma and Determines Tumor Progression and Patient Outcome

Thaïs Cuadros; Enric Trilla; Eduard Sarró; Maya R. Vilà; Jordi Vilardell; Inés M. de Torres; Mayte Salcedo; Joan López-Hellin; Alex Sánchez; Santiago Ramón y Cajal; Emilio Itarte; Juan Morote; Anna Meseguer

Renal cell carcinoma (RCC), the third most prevalent urological cancer, claims more than 100,000 lives/year worldwide. The clear cell variant (ccRCC) is the most common and aggressive subtype of this disease. While commonly asymptomatic, more than 30% of ccRCC are diagnosed when already metastatic, resulting in a 95% mortality rate. Notably, nearly one-third of organ-confined cancers treated by nephrectomy develop metastasis during follow-up care. At present, diagnostic and prognostic biomarkers to screen, diagnose, and monitor renal cancers are clearly needed. The gene encoding the cell surface molecule HAVCR1/KIM-1 is a suggested susceptibility gene for ccRCC and ectodomain shedding of this molecule may be a predictive biomarker of tumor progression. Microarray analysis of 769-P ccRCC-derived cells where HAVCR/KIM-1 levels have been upregulated or silenced revealed relevant HAVCR/KIM-1-related targets, some of which were further analyzed in a cohort of 98 ccRCC patients with 100 month follow-up. We found that HAVCR/KIM-1 activates the IL-6/STAT-3/HIF-1A axis in ccRCC-derived cell lines, which depends on HAVCR/KIM-1 shedding. Moreover, we found that pSTAT-3 S727 levels represented an independent prognostic factor for ccRCC patients. Our results suggest that HAVCR/KIM-1 upregulation in tumors might represent a novel mechanism to activate tumor growth and angiogenesis and that pSTAT-3 S727 is an independent prognostic factor for ccRCC.


Toxicology and Applied Pharmacology | 2012

A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

Eduard Sarró; Conxita Jacobs-Cachá; Emilio Itarte; Anna Meseguer

Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells.


Biochemical Journal | 2006

The N-terminal domain of the human eIF2β subunit and the CK2 phosphorylation sites are required for its function

Franc Llorens; Anna Duarri; Eduard Sarró; Nerea Roher; Maria Plana; Emilio Itarte

CK2 (protein kinase CK2) is known to phosphorylate eIF2 (eukaryotic translation initiation factor 2) in vitro; however, its implication in this process in living cells has remained to be confirmed. The combined use of chemical inhibitors (emodin and apigenin) of CK2 together with transfection experiments with the wild-type of the K68A kinase-dead mutant form of CK2alpha evidenced the direct involvement of this protein kinase in eIF2beta phosphorylation in cultured HeLa cells. Transfection of HeLa cells with human wild-type eIF2beta or its phosphorylation site mutants showed Ser2 as the main site for constitutive eIF2beta phosphorylation, whereas phosphorylation at Ser67 seems more restricted. In vitro phosphorylation of eIF2beta also pointed to Ser2 as a preferred site for CK2 phosphorylation. Overexpression of the eIF2beta S2/67A mutant slowed down the rate of protein synthesis stimulated by serum, although less markedly than the overexpression of the Delta2-138 N-terminal-truncated form of eIF2beta (eIF2beta-CT). Mutation at Ser2 and Ser67 did not affect eIF2beta integrating into the eIF2 trimer or being able to complex with eIF5 and CK2alpha. The eIF2beta-CT form was also incorporated into the eIF2 trimer but did not bind to eIF5. Overexpression of eIF2beta slightly decreased HeLa cell viability, an effect that was more evident when overexpressing the eIF2beta S2/67A mutant. Cell death was particularly marked when overexpressing the eIF2beta-CT form, being detectable at doses where eIF2beta and eIF2beta S2/67A were ineffective. These results suggest that Ser2 and Ser67 contribute to the important role of the N-terminal region of eIF2beta for its function in mammals.


FEBS Letters | 2011

Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release

Carles Gil; Anton Falqués; Eduard Sarró; Roger Cubí; Juan Blasi; José Aguilera; Emilio Itarte

In the present work we report the presence of protein kinase CK2 in lipid raft preparations from rat brain synaptosomes, obtained after detergent extraction and subsequent isolation of detergent‐resistant membranes using sucrose gradient ultracentrifugation. Moreover, the phosphorylation of syntaxin‐1 at Ser14, a specific CK2 target, has been detected in lipid rafts, as assessed by a phospho‐specific antibody. Treatment with DMAT, a specific CK2 inhibitor, results in a decrease of syntaxin‐1 Ser14 phosphorylation in lipid rafts, while the glutamate release from synaptosomes is enhanced. In conclusion, CK2 might control neurotransmitter release by acting on SNARE proteins attached to cholesterol‐enriched microdomains.


European Journal of Cancer | 2013

Hepatitis A virus cellular receptor 1/kidney injury molecule-1 is a susceptibility gene for clear cell renal cell carcinoma and hepatitis A virus cellular receptor/kidney injury molecule-1 ectodomain shedding a predictive biomarker of tumour progression

Thaïs Cuadros; Enric Trilla; Maria Rosa Vilà; Inés de Torres; Jordi Vilardell; Nabil Ben Messaoud; Mayte Salcedo; Eduard Sarró; Joan López-Hellin; Albert Blanco; C. Mir; Santiago Ramón y Cajal; Emilio Itarte; Juan Morote; Anna Meseguer

AIM OF THE STUDY To correlate hepatitis A virus cellular receptor (HAVCR)/kidney injury molecule-1 (KIM-1) expression in clear cell renal cell carcinoma (ccRCC) tumours with patient outcome and study the consequences of HAVCR/KIM-1 ectodomain shedding. METHODS HAVCR/KIM-1 expression in ccRCC, oncocytomes, papillary carcinomas and unaffected tissue counterparts was evaluated. Minimal change disease and pre-clamping normal and ccRCC tissue biopsies were included. Tissue microarrays from 98 ccRCC tumours were analysed. Tumour registry data and patient outcome were retrospectivelly collected. Deletions in HAVCR/KIM-1 ectodomain and lentiviral infection of 786-O cells with HAVCR/KIM-1 mutated constructs to determine their subcellular distribution and invasive capacity were performed. RESULTS HAVCR/KIM-1 was expressed in ccRCC, papillary tumours and in tubule cells of adjacent and distal unaffected counterparts of ccRCC tumours. The latest was not related to ischemic or tumour-related paracrine effects since pre-clamping normal biopsies were positive for HAVCR/KIM-1 and unaffected counterparts of papillary tumours were negative. HAVCR/KIM-1 analyses in patients and the invasive capacity of HAVCR/KIM-1 shedding mutants in cell lines demonstrated that: (i) relative low HAVCR/KIM-1 membrane levels correlate with activated shedding in ccRCC patients and mutant cell lines; (ii) augmented shedding directly correlates with higher invasiveness and tumour malignancy. CONCLUDING STATEMENTS: Constitutive expression of HAVCR/KIM-1 in kidney might constitute a susceptibility trait for ccRCC tumour development. Enhanced HAVCR/KIM-1 ectodomain shedding promotes invasive phenotype in vitro and more aggressive tumours in vivo.


PLOS ONE | 2010

Cyclophilin B Interacts with Sodium-Potassium ATPase and Is Required for Pump Activity in Proximal Tubule Cells of the Kidney

Guillermo Suñé; Eduard Sarró; Marta Puigmulé; Joan López-Hellin; Madeleine Zufferey; Thomas Pertel; Jeremy Luban; Anna Meseguer

Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA.


PLOS ONE | 2011

KAP Degradation by Calpain Is Associated with CK2 Phosphorylation and Provides a Novel Mechanism for Cyclosporine A-Induced Proximal Tubule Injury

Olga Tornavaca; Eduard Sarró; Gloria Pascual; Beatriz Bardaji; M. Angeles Montero; M. Teresa Salcedo; Maria Plana; Joan López-Hellin; Emilio Itarte; Anna Meseguer

The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell damage while maintaining the immunosuppressive effects of CsA.


Molecular and Cellular Biochemistry | 2005

Cross talk between protein kinase CK2 and eukaryotic translation initiation factor eIF2β subunit The carboxyl-terminal domain of eIF2β binds to specific sequences of CK2α which affect its activity

Franc Llorens; Stefania Sarno; Eduard Sarró; Anna Duarri; Nerea Roher; Flavio Meggio; Maria Plana; Lorenzo A. Pinna; Emilio Itarte

The β-subunit of eukaryotic translation initiation factor eIF2 is a substrate and a partner for protein kinase CK2. Surface plasmon resonance analysis shows that the truncated form corresponding to residues 138–333 of eIF2β (eIF2β-CT) interacts with CK2α as efficiently as full length eIF2β, whereas the form corresponding to residues 1–137, which contains the CK2 phosphorylation sites, (eIF2β-NT) does not bind. The use of different mutants and truncated forms of CK2α allowed us to map the basic segment K74–K83 at the beginning of helix αC and residues R191R195K198 in the p+1 loop as the main determinants for the binding to eIF2β-CT of either the isolated CK2α subunit or the CK2 holoenzyme. The presence of eIF2β-CT stimulated the activity of CK2α towards the RRRAADSDDDDD peptide substrate; effect that was not observed with the CK2α K74-77A whose ability to bind to eIF2β-CT is severely impaired. Gel filtration analysis confirmed the ability of CK2α to form complexes with eIF2β-CT, and the contribution of the basic cluster in CK2α (K74–K77) in this association.


bioRxiv | 2018

Cyclophilins A and B Oppositely Regulate Renal Tubular Epithelial Phenotype

Eduard Sarró; Mónica Durán; Ana Rico; Anthony J. Croatt; Karl A. Nath; Maria Teresa Salcedo; Justin H. Gundelach; Daniel Batlle; Richard J. Bram; Anna Meseguer

Cyclophilins (Cyp) are peptidil-prolyl-isomerases and the intracellular receptors for the immunosuppressant Cyclosporine-A (CsA), which produces epithelial-mesenchymal-transition (EMT) and renal tubule-interstitial fibrosis. Since CsA inhibits Cyp enzymatic activity, we hypothesized that Cyp could be involved in EMT and fibrosis. Here, we demonstrate that CypB is a critical regulator of tubule epithelial cell plasticity on the basis that: i) CypB silencing caused epithelial differentiation in proximal tubule-derived HK-2 cells, ii) CypB silencing prevented TGFβ-induced EMT in HK-2, and iii) CypB knockdown mice exhibited reduced UUO-induced inflammation and kidney fibrosis. By contrast, silencing of CypA induces a more undifferentiated phenotype and favors TGFβ effects. EMT mediators Slug and Snail were up-regulated in CypA-silenced cells, while in CypB silencing, Slug, but not Snail, was down-regulated; thus, reinforcing the role of Slug in kidney fibrosis. CypA regulates Slug through its PPIase activity whereas CypB depends on its ER location, where interacts with calreticulin, a calcium modulator which is involved in TGFβ signaling. In conclusion, this work uncovers new roles for CypA and CypB in modulating proximal tubular cell plasticity.

Collaboration


Dive into the Eduard Sarró's collaboration.

Top Co-Authors

Avatar

Anna Meseguer

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Emilio Itarte

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Maria Plana

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Juan Morote

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Enric Trilla

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jordi Vilardell

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Mayte Salcedo

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Santiago Ramón y Cajal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Anna Duarri

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Franc Llorens

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge