Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo A. Silva is active.

Publication


Featured researches published by Eduardo A. Silva.


Journal of the Royal Society Interface | 2011

Growth factor delivery-based tissue engineering: general approaches and a review of recent developments

Kangwon Lee; Eduardo A. Silva; David J. Mooney

The identification and production of recombinant morphogens and growth factors that play key roles in tissue regeneration have generated much enthusiasm and numerous clinical trials, but the results of many of these trials have been largely disappointing. Interestingly, the trials that have shown benefit all contain a common denominator, the presence of a material carrier, suggesting strongly that spatio-temporal control over the location and bioactivity of factors after introduction into the body is crucial to achieve tangible therapeutic effect. Sophisticated materials systems that regulate the biological presentation of growth factors represent an attractive new generation of therapeutic agents for the treatment of a wide variety of diseases. This review provides an overview of growth factor delivery in tissue engineering. Certain fundamental issues and design strategies relevant to the material carriers that are being actively pursued to address specific technical objectives are discussed. Recent progress highlights the importance of materials science and engineering in growth factor delivery approaches to regenerative medicine.


Journal of Thrombosis and Haemostasis | 2007

Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis.

Eduardo A. Silva; David J. Mooney

Therapeutic angiogenesis with vascular endothelial growth factor (VEGF) delivery may provide a new approach for the treatment of ischemic diseases, but current strategies to deliver VEGF rely on either bolus delivery or systemic administration, resulting in limited clinical utility, because of the short half‐life of VEGF in vivo and its resultant low and transient levels at sites of ischemia. We hypothesize that an injectable hydrogel system can be utilized to provide temporal control and appropriate spatial biodistribution of VEGF in ischemic hindlimbs. A sustained local delivery of relatively low amounts of bioactive VEGF (3 μg) with this system led to physiologic levels of bioactive VEGF in ischemic murine (ApoE−/−) hindlimbs for 15 days after injection of the gel, as contrasted with complete VEGF deprivation after 72 h with bolus injection. The gel delivery system resulted in significantly greater angiogenesis in these limbs as compared to bolus (266 vs. 161 blood vessels mm−2). Laser Doppler perfusion imaging showed return of tissue perfusion to normal levels by day 28 with the gel system, whereas normal levels of perfusion were never achieved with saline delivery of VEGF or in control mice. The system described in this article could represent an attractive new generation of therapeutic delivery vehicle for treatment of cardiovascular diseases, as it combines long‐term in vivo therapeutic benefit (localized bioactive VEGF for 1–2 weeks) with minimally invasive delivery.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Material-based deployment enhances efficacy of endothelial progenitor cells

Eduardo A. Silva; Eun-Suk Kim; Hyunjoon Kong; David J. Mooney

Cell-based therapies are attractive for revascularizing and regenerating tissues and organs, but clinical trials of endothelial progenitor cell transplantation have not resulted in consistent benefit. We propose a different approach in which a material delivery system is used to create a depot of vascular progenitor cells in vivo that exit over time to repopulate the damaged tissue and participate in regeneration of a vascular network. Microenvironmental conditions sufficient to maintain the viability and outward migration of outgrowth endothelial cells (OECs) have been delineated, and a material incorporating these signals improved engraftment of transplanted cells in ischemic murine hindlimb musculature, and increased blood vessel densities from 260 to 670 vessels per mm2, compared with direct cell injection. Further, material deployment dramatically improved the efficacy of these cells in salvaging ischemic murine limbs, whereas bolus OEC delivery was ineffective in preventing toe necrosis and foot loss. Finally, material deployment of a combination of OECs with another cell population commonly isolated from peripheral or cord blood, endothelial progenitor cells (EPCs) returned perfusion to normal levels in 40 days, and prevented toe and foot necrosis. Direct injection of an EPC/OEC combination was minimally effective in improving limb perfusion, and untreated limbs underwent autoamputation in 3 days. These results demonstrate that vascular progenitor cell utility is highly dependent on the mode of delivery, and suggest that one can create new vascular beds for a variety of applications with this material-controlled deployment of cells.


Biomaterials | 2010

Effects of VEGF temporal and spatial presentation on angiogenesis

Eduardo A. Silva; David J. Mooney

Therapeutic angiogenesis relies on the delivery of angiogenic factors capable of reversing tissue ischemia. Polymeric materials that can provide spatial and temporal over vascular endothelial growth factor (VEGF) presentation provide clear benefit, but the influence of VEGF dose, temporal, and spatial presentation on the resultant angiogenic process are largely unknown. The influence of the temporal profile of VEGF concentration, dose, and the impact of VEGF spatial distribution on angiogenesis in in vitro models of angiogenesis and ischemic murine limbs was analyzed in this study. Importantly, a profile consisting of a high VEGF concentration initially, followed by a decreasing concentration over time was found to yield optimal angiogenic sprouting. A total VEGF dose 0.1 microg/g, when delivered with kinetics found to be optimal in vitro, provided a favorable therapeutic dose in murine hindlimb ischemia model, and distributing this VEGF dose in two spatial locations induces a higher level of vascularization and perfusion than a single location. These findings suggest that material systems capable of controlling and regulating the temporal and spatial presentation of VEGF maybe useful to achieve a robust and potent therapeutic angiogenic effect in vivo.


The FASEB Journal | 2007

Integrated approach to designing growth factor delivery systems

Ruth R. Chen; Eduardo A. Silva; William W. Yuen; Andrea A. Brock; Claudia Fischbach; Angela S. Lin; Robert E. Guldberg; David J. Mooney

Growth factors have been widely used in strategies to regenerate and repair diseased tissues, but current therapies that go directly from bench to bedside have had limited clinical success. We hypothesize that engineering successful therapies with recombinant proteins will often require specific quantitative information of the spatiotemporal role of the factors and the development of sophisticated delivery approaches that provide appropriate tissue exposures. This hypothesis was tested in the context of therapeutic angiogenesis. An in vitro model of angiogenesis was adapted to quantify the role of the concentration/gradient of vascular endothelial growth factor [VEGF (165)] on microvascular endothelial cells, and a delivery system was then designed, based on a mathematical model, to provide the desired profile in ischemic mice hindlimbs. This system significantly enhanced blood vessel formation, and perfusion and recovery from severe ischemia. This general approach may be broadly applicable to growth factor therapies.— Chen R. R., Silva, E. A., Yuen, W. W., Brock, A. A., Fischbach, C., Lin, A. S., Guldberg, R. E., Mooney D. J. Integrated approach to designing growth factor delivery systems. FASEB J. 21, 3896–3903 (2007)


Pharmaceutical Research | 2010

Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis.

Qinghua Sun; Eduardo A. Silva; Aixia Wang; James C. Fritton; David J. Mooney; Mitchell B. Schaffler; Paul M. Grossman; Sanjay Rajagopalan

PurposeThe aim was to investigate that a bio-degradable alginate and poly lactide-co-glycolide (PLG) system capable of delivering growth factors sequentially would be superior to single growth factor delivery in promoting neovascularization and improving perfusion.MethodsThree groups of apoE null mice underwent unilateral hindlimb ischemia surgery and received ischemic limb intramuscular injections of alginate (Blank), alginate containing VEGF165 (VEGF), or alginate containing VEGF165 combined with PLG microspheres containing PDGF-BB (VEGF/PDGF). Vascularity in the ischemic hindlimb was assessed by morphologic and immunohistochemical end-points, while changes in blood flow were assessed by Laser Doppler Perfusion Index. Muscle VEGF and PDGF content was assessed at multiple time points.ResultsIn the VEGF/PDGF group, local tissue VEGF and PDGF levels peaked at week 2 and 4, respectively, with detectable PDGF levels at week 6. At week 6, mean vessel mean diameter was significantly greater in the VEGF/PDGF group compared to the VEGF or Blank groups with evidence of well-formed smooth muscle-lined arterioles.ConclusionsSequential delivery of VEGF and PDGF using an injectable, biodegradable platform resulted in stable and sustained improvements in perfusion. This sustained, control-released, injectable alginate polymer system is a promising approach for multiple growth factor delivery in clinical application.


Current Topics in Developmental Biology | 2004

Synthetic Extracellular Matrices for Tissue Engineering and Regeneration

Eduardo A. Silva; David J. Mooney

The need for replacement tissues or organs requires a tissue supply that cannot be satisfied by the donor supply. The tissue engineering and regeneration field is focused on the development of biological tissue and organ substitutes and may provide functional tissues to restore, maintain, or improve tissue formation. This field is already providing new therapeutic options to bypass the limitations of organ?tissue transplantation and will likely increase in medical importance in the future. This interdisciplinary field accommodates principles of life sciences and engineering and encompasses three major strategies. The first, guided tissue regeneration, relies on synthetic matrices that are conductive to host cells populating a tissue defect site and reforming the lost tissue. The second approach, inductive strategy, involves the delivery of growth factors, typically using drug delivery strategies, which are targeted to specific cell populations in the tissues surrounding the tissue defect. In the third approach, specific cell populations, typically multiplied in culture, are directly delivered to the site at which one desires to create a new tissue or organ. In all of these approaches, the knowledge acquired from developmental studies often serves as a template for the tissue engineering approach for a specific tissue or organ. This article overviews the development of synthetic extracellular matrices (ECMs) for use in tissue engineering that aim to mimic functions of the native ECM of developing and regenerating tissues. In addition to the potential therapeutic uses of these materials, they also provide model systems for basic studies that may shed light on developmental processes.


Nano Letters | 2011

Targeted Delivery of Nanoparticles to Ischemic Muscle for Imaging and Therapeutic Angiogenesis

Jaeyun Kim; Lan Cao; Dmitry Shvartsman; Eduardo A. Silva; David J. Mooney

Targeting of nanoparticles to ischemic tissues was studied in a murine ischemic hindlimb model. Intravenously injected fluorescent nanoparticles allowed ischemia-targeted imaging of ischemic muscles due to increased permeability of blood vessels in hypoxic tissues. Targeting efficiency correlated with blood perfusion after induction of ischemia and was enhanced in early stages of ischemia (<7 days). Therapeutic delivery of vascular endothelial growth factor (VEGF) was achieved by VEGF-conjugated nanoparticles and resulted in a 1.7-fold increase in blood perfusion, as compared to control mice. This work supports the application of nanoparticles as imaging and therapeutic modalities for ischemia treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones

William W. Yuen; Nan R. Du; Chun H. Chan; Eduardo A. Silva; David J. Mooney

Nature frequently utilizes opposing factors to create a stable activator gradient to robustly control pattern formation. This study employs a biomimicry approach, by delivery of both angiogenic and antiangiogenic factors from spatially restricted zones of a synthetic polymer to achieve temporally stable and spatially restricted angiogenic zones in vivo. The simultaneous release of the two spatially separated agents leads to a spatially sharp angiogenic region that is sustained over 3 wk. Further, the contradictory action of the two agents leads to a stable level of proangiogenic stimulation in this region, in spite of significant variations in the individual release rates over time. The resulting spatially restrictive and temporally sustained profiles of active signaling allow the creation of a spatially heterogeneous and functional vasculature.


Cell Transplantation | 2010

Injectable VEGF Hydrogels Produce Near Complete Neurological and Anatomical Protection Following Cerebral Ischemia in Rats

Dwaine F. Emerich; Eduardo A. Silva; Omar A. Ali; David J. Mooney; W Bell; Seong Jin Yu; Yuji Kaneko; Cesar V. Borlongan

Vascular endothelial growth factor (VEGF) is a potent proangiogenic peptide and its administration has been considered as a potential neuroprotective strategy following cerebral stroke. Because VEGF has a short half-life and limited access to the brain parenchyma following systemic administration, approaches are being developed to deliver it directly to the site of infarction. In the present study, VEGF was incorporated into a sustained release hydrogel delivery system to examine its potential benefits in a rat model of cerebral ischemia. The hydrogel loaded with VEGF (1 μg) was stereotaxically injected into the striatum of adult rats 15 min prior to a 1-h occlusion of the middle cerebral artery. Two days after surgery, animals were tested for motor function using the elevated bias swing test (EBST) and Bederson neurological battery. Control animals received either stroke alone, stroke plus injections of a blank gel, or a single bolus injection of VEGF (1 μg). Behavioral testing confirmed that the MCA occlusion resulted in significant deficits in the the EBST and Bederson tests. In contrast, the performance of animals receiving VEGF gels was significantly improved relative to controls, with only modest impairments observed. Cerebral infarction analyzed using 2,3,5-triphenyl-tetrazolium chloride staining confirmed that the VEGF gels significantly and potently reduced the lesion volume. No neurological or histological benefits were conferred by either blank gel or bolus VEGF injections. These data demonstrate that VEGF, delivered from a hydrogel directly to the brain, can induce significant functional and structural protection from ischemic damage in a rat model of stroke.

Collaboration


Dive into the Eduardo A. Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Sessa Stilhano

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hakan Orbay

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge