Eduardo Bortoluzzi Dornelles
Universidade Federal de Santa Maria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eduardo Bortoluzzi Dornelles.
PLOS ONE | 2014
Fernanda Barbisan; Jéssica de Rosso Motta; Alexis Trott; Verônica Farina Azzolin; Eduardo Bortoluzzi Dornelles; Matheus Marcon; Thaís Doeler Algarve; Marta M.M.F. Duarte; Clarice Pinheiro Mostardeiro; Taís Cristina Unfer; Karen Lilian Schott; Ivana Beatrice Mânica da Cruz
Methotrexate (MTX) is a folic acid antagonist used in high doses as an anti-cancer treatment and in low doses for the treatment of some autoimmune diseases. MTX use has been linked to oxidative imbalance, which may cause multi-organ toxicities that can be attenuated by antioxidant supplementation. Despite the oxidative effect of MTX, the influence of antioxidant gene polymorphisms on MTX toxicity is not well studied. Therefore, we analyzed here whether a genetic imbalance of the manganese-dependent superoxide dismutase (SOD2) gene could have some impact on the MTX cytotoxic response. An in vitro study using human peripheral blood mononuclear cells (PBMCs) obtained from carriers with different Ala16Val-SOD2 genotypes (AA, VV and AV) was carried out, and the effect on cell viability and proliferation was analyzed, as well as the effect on oxidative, inflammatory and apoptotic markers. AA-PBMCs that present higher SOD2 efficiencies were more resistance to high MTX doses (10 and 100 µM) than were the VV and AV genotypes. Both lipoperoxidation and ROS levels increased significantly in PBMCs exposed to MTX independent of Ala16Val-SOD2 genotypes, whereas increased protein carbonylation was observed only in PBMCs from V allele carriers. The AA-PBMCs exposed to MTX showed decreasing SOD2 activity, but a concomitant up regulation of the SOD2 gene was observed. A significant increase in glutathione peroxidase (GPX) levels was observed in all PBMCs exposed to MTX. However, this effect was more intense in AA-PBMCs. Caspase-8 and -3 levels were increased in cells exposed to MTX, but the modulation of these genes, as well as that of the Bax and Bcl-2 genes involved in the apoptosis pathway, presented a modulation that was dependent on the SOD2 genotype. MTX at a concentration of 10 µM also increased inflammatory cytokines (IL-1β, IL-6, TNFα and Igγ) and decreased the level of IL-10 anti-inflammatory cytokine, independent of SOD2 genetic background. The results suggest that potential pharmacogenetic effect on the cytotoxic response to MTX due differential redox status of cells carriers different SOD2 genotypes.
Reproductive Biomedicine Online | 2012
Felipe Denardin Costa; Eduardo Bortoluzzi Dornelles; Maria Fernanda Mânica-Cattani; Thaís Doeller Algarve; Olmiro Cezimbra de Souza Filho; Michele Rorato Sagrillo; Luiz Filipe Machado Garcia; Ivana Beatrice Mânica da Cruz
This study investigated the in-vitro antioxidant properties of the ovulation induction drug, clomiphene citrate, and assessed whether its effects are influenced by the Val16Ala polymorphism in the SOD2 gene, which encodes manganese superoxide dismutase enzyme. The investigation involved an in-vitro experimental protocol testing the effect of different concentrations of clomiphene citrate on antioxidant capacity, reactive oxygen species (ROS) production and peripheral blood mononuclear cell (PBMC) culture viability. A total of 58 healthy adult women were genotyped for the Val16Ala SOD2 polymorphism, and blood samples were collected to perform in-vitro experiments. ROS production and cytotoxicity assays were performed on blood and PBMC from carriers of different Val16Ala SOD2 genotypes. Clomiphene citrate exhibited antioxidant capacity and effects and decreased ROS production. The AA genotype displayed a more responsive antioxidant effect with clomiphene citrate treatment than other genotypes. AA and AV PBMC showed an increase in viability following treatment with 10 μmol/l clomiphene citrate when compared with control groups. The results suggest that clomiphene citrate exhibits antioxidant activity similar to that observed with other selective oestrogen receptor modulators, and the intensity of the effect appears to be SOD2 polymorphism dependent. This study was performed to investigate whether clomiphene citrate, a drug broadly used to evaluate reproductive function in women, presents antioxidant effects and if these effects could be influenced by genetic variation in the women. We found evidence that clomiphene citrate has some antioxidant properties similar to those observed with other selective oestrogen receptor modulators such as tamoxifen. As the antioxidant enzyme manganese superoxide dismutase (SOD2) is considered a key molecule involved in female reproductive metabolism, we also tested if a functional SOD2 gene polymorphism (Val16Ala) could influence the in-vitro antioxidant clomiphene citrate response. Significant differences of the clomiphene citrate antioxidant effect on PBMC with different Val16Ala SOD genotypes were observed in this study. Based on these results, we could speculate that alterations in SOD2 activity caused by the Val16Ala polymorphism can result in differential responses to drugs such as clomiphene citrate. In assisted reproduction clinics, clomiphene citrate is commonly used to induce ovulation, especially in patients with polycystic ovary syndrome. However, some women have clomiphene citrate resistance and either ovulation is not triggered by the drug or ovulation is induced but the pregnancy still fails. The causes of no effect of clomiphene citrate remain unclear and we cannot discard the influence of genetic effects including the Val16Ala SOD2 polymorphism. Therefore, it is important to perform complementary investigations considering the potential pharmacogenetic influence of Val16Ala SOD2 polymorphism on the treatment of polycystic ovary syndrome or in ovulation to elucidate this question.
Toxicology in Vitro | 2016
Verônica Farina Azzolin; Francine Carla Cadoná; Alencar Machado; Maiquidieli Dal Berto; Fernanda Barbisan; Eduardo Bortoluzzi Dornelles; Werner Giehl Glanzner; Paulo Bayard Dias Gonçalves; Claudia Giugliano Bica; Ivana Beatrice Mânica da Cruz
The role of superoxide dismutase manganese dependent enzyme (SOD2) in colorectal cancer is presently insufficiently understood. Some studies suggest that high SOD2 levels found in cancer tissues are associated with cancer progression. However, thus far, the role of colorectal cancer superoxide-hydrogen peroxide imbalance has not yet been studied. Thus, in order to address this gap in extant literature, we performed an in vitro analysis using HT-29 colorectal cell line exposed to paraquat, which generates high superoxide levels, and porphyrin, a SOD2 mimic molecule. The effect of these drugs on colorectal cancer cell response to oxaliplatin was evaluated. At 0.1 μM concentration, both drugs exhibited cytotoxic and antiproliferative effect on colorectal cancer cells. However, this effect was more pronounced in cells exposed to paraquat. Paraquat also augmented the oxaliplatin cytotoxic and antiproliferative effects by increasing the number of apoptosis events, thus causing the cell cycle arrest in the S and M/G2 phases. The treatments were also able to differentially modulate genes related to apoptosis, cell proliferation and antioxidant enzyme system. However, the effects were highly variable and the results obtained were inconclusive. Nonetheless, our findings support the hypothesis that imbalance caused by increased hydrogen peroxide levels could be beneficial to cancer cell biology. Therefore, the use of therapeutic strategies to decrease hydrogen peroxide levels mainly during oxaliplatin chemotherapy could be clinically important to the outcomes of colorectal cancer treatment.
Anti-cancer Agents in Medicinal Chemistry | 2016
Francine Carla Cadoná; Alencar Machado; Verônica Farina Azzolin; Fernanda Barbisan; Eduardo Bortoluzzi Dornelles; Werner G. Glanzner; Paulo Bayard Dias Gonçalves; Charles Elias Assmann; Euler Esteves Ribeiro; Ivana Beatrice Mânica da Cruz
We investigated the in vitro effects of guaraná and its main metabolites (caffeine, theobromine and catechin) on cytotoxicity and cell proliferation on colorectal cancer (CRC) line HT-29 cells and on oxaliplatin sensitivity. The cells were exposed to different concentrations of guaraná extract with and without oxaliplatin. The concentrations of bioactive molecules were also estimated considering their potential proportion on guaraná hydro-alcoholic extract. Apoptosis effect was analyzed by annexin V quantification using flow cytometry, while apoptosis pathway gene modulation (p53, Bax/Bcl-2 genes ratio, caspases 8 and 3) was determined by qRT-PCR analysis. Cells exposed to guaraná at a concentration of 100 μg/mL presented a similar cytotoxic effect as HT-29 cells treated with oxaliplatin and did not affect the sensitivity of the drug. Guaraná presented cell anti-proliferative effect and increased anti-proliferative oxaliplatin sensitivity at all concentrations tested here. Guaraná was able to induce apoptosis and up-regulate the p53 and Bax/Bcl-2 genes.
Biomedicine & Pharmacotherapy | 2018
Charles Elias Assmann; Francine Carla Cadoná; Beatriz da Silva Rosa Bonadiman; Eduardo Bortoluzzi Dornelles; Gabriela Trevisan; Ivana Beatrice Mânica da Cruz
The purpose of this study was to investigate some possible mechanisms underlying the in vitro antitumor activity of tea tree oil (TTO) on human and mouse breast cancer cells (MCF-7 and 4T1, respectively) and its cytotoxicity on fibroblasts (HFF-1) and on peripheral blood mononuclear cells (PBMCs). TTO High-Resolution Gas Chromatography (HRGC) showed seventeen main constituents, such as Terpinen-4-ol, γ-Terpinene, and α-Terpinene. High TTO concentrations (≥ 600 μg/mL) showed a remarkable antitumor activity, decreasing cell viability and cell proliferation of MCF-7 and 4T1 cells. TTO at 300 μg/mL increased the number of MCF-7 cells in the early stages of apoptosis and increased the BAX/BCL-2 genes ratio. TTO, mainly at 300 μg/mL, decreased cell growth and arrested MCF-7 cells in the S phase of the cell cycle. Lower antitumor concentrations (≤300 μg/mL) evaluated in MCF-7 and 4T1 cells were not cytotoxic to PBMCs and HFF-1. Also, TTO (300 μg/mL) was able to induce cell proliferation in fibroblasts after 72 h, indicating non-cytotoxic effect in these cells. TTO exhibited in vitro antitumor effect on MCF-7 and 4T1 cells by decreasing cell viability and modulating apoptotic pathways and cell cycle arrestment of MCF-7 cells. In this sense, our study provides new perspectives on the potential use of TTO for the development of new alternative therapies to treat topically locally advanced breast cancer (LABC).
Prostaglandins & Other Lipid Mediators | 2016
Cristine Kolling Konopka; Verônica Farina Azzolin; Francine Carla Cadoná; Alencar Machado; Eduardo Bortoluzzi Dornelles; Fernanda Barbisan; Ivana Beatrice Mânica da Cruz
Misoprostol, prostaglandin E1 analogue, used for labour induction. However, one-third of patients who have labour induced with prostaglandins do not reach vaginal delivery. The differential expression of prostaglandin receptors in myometrial cells could account for this differential response. Since delivery physiology also involves modulation of oxidative metabolism that can be potentially affected by pharmacological drugs, in the present investigation the role of misoprostol on expression of prostaglandin receptors, and oxidative markers of myometrial cells was evaluated. Samples of myometrial tissues procured from women with spontaneous (SL) and nonspontaneous (NSL) labours were cultured in vitro and exposed to different concentrations of misoprostol. Gene expression was evaluated by qRT-PCR and oxidative biomarkers were evaluated by spectrophotometric and fluorometric analysis. Cells from SL women presented greater responsiveness to misoprostol, since an upregulation of genes related to increased muscle contraction was observed. Otherwise, cells from NSL women had low responsiveness to misoprostol exposure or even a suppressive effect on the expression of these genes. Oxidative biomarkers that previously have been related to labour physiology were affected by misoprostol treatment: lipoperoxidation and protein carbonylation (PC). However, a decrease in lipoperoxidation was observed only in SL cells treated with low concentrations of misoprostol, whereas a decrease of PC occurred in all samples treated with different misoprostol concentrations. The results suggest a pharmacogenetic effect of misoprostol in labour induction involving differential regulation of EP receptor genes, as well as some minor differential modulation of oxidative metabolism in myometrial cells.
Biogerontology | 2015
Dianni M Capeleto; Fernanda Barbisan; Verônica Farina Azzolin; Eduardo Bortoluzzi Dornelles; Felipe Rogalski; Cibele Ferreira Teixeira; Alencar Machado; Francine Carla Cadoná; Tális da Silva; Thiago Duarte; Marta M.M.F. Duarte; Ivana Beatrice Mânica da Cruz
Iheringia Serie Botanica | 2008
André Luís Lopes da Silva; Elci Terezinha Henz Franco; Eduardo Bortoluzzi Dornelles; João Pedro Arzivenko Gesing
Food Research International | 2015
Alencar Machado; Francine Carla Cadoná; Verônica Farina Azzolin; Eduardo Bortoluzzi Dornelles; Fernanda Barbisan; Euler Esteves Ribeiro; Maria Fernanda Mânica-Cattani; Marta M.M.F. Duarte; José Raul Pinto Saldanha; Ivana Beatrice Mânica da Cruz
Iheringia Serie Botanica | 2009
André Luís Lopes da Silva; Elci Terezinha Henz Franco; Eduardo Bortoluzzi Dornelles; Caroline Larissa Reichert Bortoli; Marguerite Quoirin