Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo Esteve is active.

Publication


Featured researches published by Eduardo Esteve.


Diabetes | 2006

Serum Visfatin Increases With Progressive β-Cell Deterioration

Abel López-Bermejo; Berta Chico-Julià; Mercé Fernández-Balsells; Mónica Recasens; Eduardo Esteve; Roser Casamitjana; Wifredo Ricart; José-Manuel Fernández-Real

Visfatin has shown to be increased in type 2 diabetes but to be unrelated to insulin sensitivity. We hypothesized that visfatin is associated with insulin secretion in humans. To this aim, a cross-sectional study was conducted in 118 nondiabetic men and 64 (35 men and 29 women) type 2 diabetic patients. Type 1 diabetic patients with long-standing disease (n = 58; 31 men and 27 women) were also studied. In nondiabetic subjects, circulating visfatin (enzyme immunoassay) was independently associated with insulin secretion (acute insulin response to glucose [AIRg] from intravenous glucose tolerance tests) but not with insulin sensitivity (Si) or other metabolic or anthropometric parameters, and AIRg alone explained 8% of visfatin variance (β = −0.29, P = 0.001). Circulating visfatin was increased in type 2 diabetes (mean 18 [95% CI 16–21] vs. 15 ng/ml [13–17] for type 2 diabetic and nondiabetic subjects, respectively; P = 0.017, adjusted for sex, age, and BMI), although this association was largely attenuated after accounting for HbA1c (A1C). Finally, circulating visfatin was found to be increased in patients with long-standing type 1 diabetes, even after adjusting for A1C values (37 ng/ml [34–40]; P < 0.0001, adjusted for sex, age, BMI, and A1C compared with either type 2 diabetic or nondiabetic subjects). In summary, circulating visfatin is increased with progressive β-cell deterioration. The study of the regulation and role of visfatin in diabetes merits further consideration.


Diabetes Care | 2014

Profiling of Circulating MicroRNAs Reveals Common MicroRNAs Linked to Type 2 Diabetes That Change With Insulin Sensitization

Francisco Ortega; Josep M. Mercader; José María Moreno-Navarrete; Oscar Rovira; Ester Guerra; Eduardo Esteve; Cristina Martínez; Wifredo Ricart; Jennifer Rieusset; Sophie Rome; Monika Karczewska-Kupczewska; Marek Straczkowski; José Manuel Fernández-Real

OBJECTIVE This study sought to identify the profile of circulating microRNAs (miRNAs) in type 2 diabetes (T2D) and its response to changes in insulin sensitivity. RESEARCH DESIGN AND METHODS The circulating miRNA profile was assessed in a pilot study of 12 men: 6 with normal glucose tolerance (NGT) and 6 T2D patients. The association of 10 circulating miRNAs with T2D was cross-sectionally validated in an extended sample of 45 NGT vs. 48 T2D subjects (65 nonobese and 28 obese men) and longitudinally in 35 T2D patients who were recruited in a randomized, double-blinded, and placebo-controlled 3-month trial of metformin treatment. Circulating miRNAs were also measured in seven healthy volunteers before and after a 6-h hyperinsulinemic-euglycemic clamp and insulin plus intralipid/heparin infusion. RESULTS Cross-sectional studies disclosed a marked increase of miR-140-5p, miR-142-3p, and miR-222 and decreased miR-423-5p, miR-125b, miR-192, miR-195, miR-130b, miR-532-5p, and miR-126 in T2D patients. Multiple linear regression analyses revealed that miR-140-5p and miR-423-5p contributed independently to explain 49.5% (P < 0.0001) of fasting glucose variance after controlling for confounders. A discriminant function of four miRNAs (miR-140-5p, miR-423-5p, miR-195, and miR-126) was specific for T2D with an accuracy of 89.2% (P < 0.0001). Metformin (but not placebo) led to significant changes in circulating miR-192 (49.5%; P = 0.022), miR-140-5p (−15.8%; P = 0.004), and miR-222 (−47.2%; P = 0.03), in parallel to decreased fasting glucose and HbA1c. Furthermore, while insulin infusion during clamp decreased miR-222 (−62%; P = 0.002), the intralipid/heparin mixture increased circulating miR-222 (163%; P = 0.015) and miR-140-5p (67.5%; P = 0.05). CONCLUSIONS This study depicts the close association between variations in circulating miRNAs and T2D and their potential relevance in insulin sensitivity.


Diabetes Care | 2009

Adipocytokines and Insulin Resistance: The possible role of lipocalin-2, retinol binding protein-4, and adiponectin

Eduardo Esteve; Wifredo Ricart; José Manuel Fernández-Real

It is well known that adipocytes and resident macrophages that have migrated to adipose tissue produce and secrete a variety of biologically active mediators (adipocytokines), which are thought to contribute to the development of insulin resistance, type 2 diabetes, and cardiovascular disease (1). The abnormal function of adipocytes may play an important role in the development of a chronic low-grade proinflammatory state associated with obesity (2). For example, adipocyte hypertrophy appears to lead to an imbalance between pro- and anti-inflammatory adipokines. The secretion of interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1, and granulocyte colony–stimulating factor have been positively correlated with adipocyte size. Adipose tissue is an important inflammatory source in obesity and type 2 diabetes, not only because of cytokines produced from the adipocyte itself, but also because of infiltration by proinflammatory macrophages (3). Not only do adipocytes, but also adipose tissue macrophage numbers, increase with obesity and participate in inflammatory pathways of obese individuals. Macrophages from adipose tissue are responsible for almost all adipose tissue tumor necrosis factor (TNF)-α and significant amounts of IL-6 production. Macrophages migrating to adipose tissue in response to high-fat feeding overexpress proinflammatory cytokines. Different cytokines synthesized by adipocytes or by macrophages from adipose tissue may induce insulin resistance, such as IL-6, TNF-α, leptin, resistin, adiponectin, retinol binding protein-4 (RBP4), or lipocalin-2 (LCN2). This review focuses on the latter adipocytokines, hinting at their role in obesity-associated insulin resistance. LCN2 (or neutrophil gelatinase-associated lipocalin) is a recently identified adipokine that belongs to the superfamily of lipocalins (such as RBP4), which seems to affect glucose metabolism and insulin sensitivity (4). LCN2 protein has been implicated in diverse actions, such as apoptosis and innate immunity, and is expressed in several tissues, including neutrophils, liver, kidney, adipocytes, and macrophages (5). Lipocalins comprise a class of proteins that are …


Nature Medicine | 2017

Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug

Hao Wu; Eduardo Esteve; Valentina Tremaroli; Muhammad Tanweer Khan; Robert Caesar; Louise Mannerås-Holm; Marcus Ståhlman; Lisa M Olsson; Matteo Serino; Mercè Planas-Fèlix; Josep M. Mercader; David Torrents; Rémy Burcelin; Wifredo Ricart; Rosie Perkins; José Manuel Fernández-Real; Fredrik Bäckhed

Metformin is widely used in the treatment of type 2 diabetes (T2D), but its mechanism of action is poorly defined. Recent evidence implicates the gut microbiota as a site of metformin action. In a double-blind study, we randomized individuals with treatment-naive T2D to placebo or metformin for 4 months and showed that metformin had strong effects on the gut microbiome. These results were verified in a subset of the placebo group that switched to metformin 6 months after the start of the trial. Transfer of fecal samples (obtained before and 4 months after treatment) from metformin-treated donors to germ-free mice showed that glucose tolerance was improved in mice that received metformin-altered microbiota. By directly investigating metformin–microbiota interactions in a gut simulator, we showed that metformin affected pathways with common biological functions in species from two different phyla, and many of the metformin-regulated genes in these species encoded metalloproteins or metal transporters. Our findings provide support for the notion that altered gut microbiota mediates some of metformins antidiabetic effects.


Obesity | 2010

The gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue of obese subjects

Francisco Ortega; Dolores Mayas; José María Moreno-Navarrete; Victoria Catalán; Javier Gómez-Ambrosi; Eduardo Esteve; José Ignacio Rodríguez-Hermosa; Bartomeu Ruiz; Wifredo Ricart; Belén Peral; Gema Frühbeck; Francisco J. Tinahones; José Manuel Fernández-Real

Contradictory findings regarding the gene expression of the main lipogenic enzymes in human adipose tissue depots have been reported. In this cross‐sectional study, we aimed to evaluate the mRNA expression of fatty acid synthase (FAS) and acetyl‐CoA carboxilase (ACC) in omental and subcutaneous (SC) fat depots from subjects who varied widely in terms of body fat mass. FAS and ACC gene expression were evaluated by real time‐PCR in 188 samples of visceral adipose tissue which were obtained during elective surgical procedures in 119 women and 69 men. Decreased sex‐adjusted FAS (−59%) and ACC (−49%) mRNA were found in visceral adipose tissue from obese subjects, with and without diabetes mellitus type 2 (DM‐2), compared with lean subjects (both P < 0.0001). FAS mRNA was also decreased (−40%) in fat depots from overweight subjects (P < 0.05). Indeed, FAS mRNA was significantly and positively associated with ACC gene expression (r = 0.316, P < 0.0001) and negatively with BMI (r = −0.274), waist circumference (r = −0.437), systolic blood pressure (r = −0.310), serum glucose (r = −0.277), and fasting triglycerides (r = −0.226), among others (all P < 0.0001). Similar associations were observed for ACC gene expression levels. In a representative subgroup of nonobese (n = 4) and obese women (n = 6), relative FAS gene expression levels significantly correlated (r = 0.657, P = 0.034; n = 10) with FAS protein values. FAS protein levels were also inversely correlated with blood glucose (r = −0.640, P = 0.046) and fasting triglycerides (r = −0.832, P = 0.010). In conclusion, the gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue from obese subjects.


Current Opinion in Clinical Nutrition and Metabolic Care | 2011

Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes: did gut microbiote co-evolve with insulin resistance?

Eduardo Esteve; Wifredo Ricart; José-Manuel Fernández-Real

Purpose of reviewThe prevalence of obesity, insulin resistance and type 2 diabetes has steadily increased in the last decades. In addition to the genetic and environmental factors, gut microbiota may play an important role in the modulation of intermediary phenotypes leading to metabolic disease. Recent findingsObesity and type 2 diabetes are associated with specific changes in gut microbiota composition. The mechanisms underlying the association of specific gut microbiota and metabolic disease include increasing energy harvest from the diet, changes in host gene expression, energy expenditure and storage, and alterations in gut permeability leading to metabolic endotoxemia, inflammation and insulin resistance. In some studies, the modifications of gut microbiota induced by antibiotics, prebiotics and probiotics led to improved inflammatory activity in parallel to amelioration of insulin sensitivity and decreased adiposity. However, these effects were mainly observed in animal models. Their extrapolation to humans awaits further studies. SummaryThe fascinating role of gut microbiota on metabolic disease opens new avenues in the treatment of obesity, insulin resistance and type 2 diabetes. A co-evolutionary clue for microbiota and insulin resistance is suggested.


Scientific Reports | 2015

Obesity changes the human gut mycobiome

M. Mar Rodríguez; Daniel R. Perez; Felipe Javier Chaves; Eduardo Esteve; Pablo Marin-Garcia; Joan Vendrell; Mariona Jové; Reinald Pamplona; Wifredo Ricart; Manuel Portero-Otin; Matilde R. Chacón; José Manuel Fernández Real

The human intestine is home to a diverse range of bacterial and fungal species, forming an ecological community that contributes to normal physiology and disease susceptibility. Here, the fungal microbiota (mycobiome) in obese and non-obese subjects was characterized using Internal Transcribed Spacer (ITS)-based sequencing. The results demonstrate that obese patients could be discriminated by their specific fungal composition, which also distinguished metabolically “healthy” from “unhealthy” obesity. Clusters according to genus abundance co-segregated with body fatness, fasting triglycerides and HDL-cholesterol. A preliminary link to metabolites such as hexadecanedioic acid, caproic acid and N-acetyl-L-glutamic acid was also found. Mucor racemosus and M. fuscus were the species more represented in non-obese subjects compared to obese counterparts. Interestingly, the decreased relative abundance of the Mucor genus in obese subjects was reversible upon weight loss. Collectively, these findings suggest that manipulation of gut mycobiome communities might be a novel target in the treatment of obesity.


Clinical Endocrinology | 2006

Polymorphisms in the interleukin‐6 receptor gene are associated with body mass index and with characteristics of the metabolic syndrome

Eduardo Esteve; Gemma Villuendas; Judith Mallolas; Joan Vendrell; Abel López-Bermejo; Matilde Rodríguez; Mónica Recasens; Wifredo Ricart; José L. San Millán; Héctor F. Escobar-Morreale; Cristóbal Richart; José Manuel Fernández-Real

Objective  Low‐grade inflammation has been related to obesity, insulin resistance and the metabolic syndrome. The Asp358Ala variant and the CA‐repeat polymorphism in the interleukin‐6 receptor (IL‐6R) gene have been reported to be associated with obesity in Pima Indians and Spanish women, respectively. The aim of this study was to investigate the association between these polymorphisms and obesity in a Mediterranean‐Caucasian population, and to determine whether this polymorphism was related to the metabolic syndrome as defined by the National Cholesterol Education Program – Adult Treatment Panel III (NCEP/ATP‐III) criteria.


Obesity | 2009

Subcutaneous Fat Shows Higher Thyroid Hormone Receptor-α1 Gene Expression Than Omental Fat

Francisco Ortega; José María Moreno-Navarrete; Vicent Ribas; Eduardo Esteve; José Ignacio Rodríguez-Hermosa; Bartomeu Ruiz; Belén Peral; Wifredo Ricart; Antonio Zorzano; José Manuel Fernández-Real

The aims of this work were to evaluate thyroid hormone receptor‐α (TRα), TRα1, and TRα2 mRNA gene expression and TRα1:TRα2 ratio, identified as candidate factors for explaining regional differences between human adipose tissue depots. TRα, TRα1, and TRα2 mRNA levels, and the gene expressions of arginine–serine‐rich, splicing factor 2 (SF2), heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1), heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), and Spot 14 (S14) were evaluated in 76 paired adipose tissue samples obtained from a population of 38 women who varied widely in terms of obesity and body fat distribution. Gene expression for these factors was also studied in stromal‐vascular cells (SVCs) and mature adipocytes (MAs) from eight paired fat depots. TRα gene and TRα1 mRNA expression were increased 1.46‐fold (P = 0.006) and 1.80‐fold (P < 0.0001), respectively, in subcutaneous (SC) vs. visceral fat. These differences in gene expression levels were most significant in the obese group, in which the TRα1:TRα2 ratio was 2.24‐fold (P < 0.0001) higher in SC vs. visceral fat. S14 gene expression was also increased by 2.42‐fold (P < 0.0001) and correlated significantly with TRα and TRα1 gene expression and with the TRα1:TRα2 ratio. In agreement with these findings, hnRNP A1:SF2 ratio was decreased by 1.39‐fold (P = 0.001). TRα and S14 levels were 2.1‐fold (P < 0.0001) and 112.4‐fold (P < 0.0001), respectively, higher in MAs than in SVCs from both fat depots. In summary, genes for TR‐α, their upstream regulators, and downstream effectors were differentially expressed in SC vs. omental (OM) adipose tissue. Our findings suggest that TRα1 could contribute to SC adipose tissue expandability in obese subjects.


Journal of diabetes science and technology | 2010

Real-Time Glucose Estimation Algorithm for Continuous Glucose Monitoring Using Autoregressive Models

Yenny Leal; Winston Garcia-Gabin; Jorge Bondia; Eduardo Esteve; Wifredo Ricart; José-Manuel Fernández-Real; Josep Vehí

Background: Continuous glucose monitors (CGMs) present a problem of lack of accuracy, especially in the lower range, sometimes leading to missed or false hypoglycemia. A new algorithm is presented here aimed at improving the measurement accuracy and hypoglycemia detection. Its core is the estimation of blood glucose (BG) in real time (RT) from CGM intensity readings using autoregressive (AR) models. Methods: Eighteen patients with type 1 diabetes were monitored for three days (one at the hospital and two at home) using the CGMS® Gold. For these patients, BG samples were taken every 15 min for 2 h after meals and every half hour otherwise during the first day. The relationship between the current measured by the CGMS Gold and BG was learned by an AR model, allowing its RT estimation. New capillary glucose measurements were used to correct the model BG estimations. Results: A total of 563 paired points were obtained from BG and monitor readings to validate the new algorithm. 98.5% of paired points fell in zones A+B of the Clarke error grid analysis with the proposed algorithm. The overall mean and median relative absolute differences (RADs) were 9.6% and 6.7%. Measurements meeting International Organization for Standardization (ISO) criteria were 88.7%. In the hypoglycemic range, the mean and median RADs were 8.1% and 6.0%, and measurements meeting ISO criteria were 86.7%. The sensitivity and specificity with respect to hypoglycemia detection were 91.5% and 95.0%. Conclusions: The performance measured with both clinical and numerical accuracy metrics illustrates the improved accuracy of the proposed algorithm compared with values presented in the literature. A significant improvement in hypoglycemia detection was also observed.

Collaboration


Dive into the Eduardo Esteve's collaboration.

Top Co-Authors

Avatar

Wifredo Ricart

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan Vendrell

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Bondia

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge