Eduardo F. Mendes
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eduardo F. Mendes.
Neural Computation | 2012
Eduardo F. Mendes; Wenxin Jiang
In this letter, we consider a mixture-of-experts structure where m experts are mixed, with each expert being related to a polynomial regression model of order k. We study the convergence rate of the maximum likelihood estimator in terms of how fast the Hellinger distance of the estimated density converges to the true density, when the sample size n increases. The convergence rate is found to be dependent on both m and k, while certain choices of m and k are found to produce near-optimal convergence rates.
Econometric Reviews | 2017
Marcelo C. Medeiros; Eduardo F. Mendes
In this paper, we show the validity of the adaptive least absolute shrinkage and selection operator (LASSO) procedure in estimating stationary autoregressive distributed lag(p,q) models with innovations in a broad class of conditionally heteroskedastic models. We show that the adaptive LASSO selects the relevant variables with probability converging to one and that the estimator is oracle efficient, meaning that its distribution converges to the same distribution of the oracle-assisted least squares, i.e., the least square estimator calculated as if we knew the set of relevant variables beforehand. Finally, we show that the LASSO estimator can be used to construct the initial weights. The performance of the method in finite samples is illustrated using Monte Carlo simulation.
arXiv: Computation | 2015
Eduardo F. Mendes; Marcel Scharth; Robert Kohn
We introduce a new Markov chain Monte Carlo (MCMC) sampler called the Markov Interacting Importance Sampler (MIIS). The MIIS sampler uses conditional importance sampling (IS) approximations to jointly sample the current state of the Markov Chain and estimate conditional expectations, possibly by incorporating a full range of variance reduction techniques. We compute Rao-Blackwellized estimates based on the conditional expectations to construct control variates for estimating expectations under the target distribution. The control variates are particularly efficient when there are substantial correlations between the variables in the target distribution, a challenging setting for MCMC. An important motivating application of MIIS occurs when the exact Gibbs sampler is not available because it is infeasible to directly simulate from the conditional distributions. In this case the MIIS method can be more efficient than a Metropolis-within-Gibbs approach. We also introduce the MIIS random walk algorithm, designed to accelerate convergence and improve upon the computational efficiency of standard random walk samplers. Simulated and empirical illustrations for Bayesian analysis show that the method significantly reduces the variance of Monte Carlo estimates compared to standard MCMC approaches, at equivalent implementation and computational effort.
Textos para discussão | 2015
Marcelo C. Medeiros; Eduardo F. Mendes
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume that both the number of covariates in the model and the number of candidate variables can increase with the sample size (polynomially orgeometrically). In other words, we let the number of candidate variables to be larger than the number of observations. We show the adaLASSO consistently chooses the relevant variables as the number of observations increases (model selection consistency) and has the oracle property, even when the errors are non-Gaussian and conditionally heteroskedastic. This allows the adaLASSO to be applied to a myriad of applications in empirical finance and macroeconomics. A simulation study shows that the method performs well in very general settings with t-distributed and heteroskedastic errors as well with highly correlated regressors. Finally, we consider an application to forecast monthly US inflation with many predictors. The model estimated by the adaLASSO delivers superior forecasts than traditional benchmark competitors such as autoregressive and factor models.
Econometric Reviews | 2014
Marcelo C. Medeiros; Eduardo F. Mendes; Les Oxley
We derive the asymptotic distribution of the ordinary least squares estimator in a regression with cointegrated variables under misspecification and/or nonlinearity in the regressors. We show that, under some circumstances, the order of convergence of the estimator changes and the asymptotic distribution is non-standard. The t-statistic might also diverge. A simple case arises when the intercept is erroneously omitted from the estimated model or in nonlinear-in-variables models with endogenous regressors. In the latter case, a solution is to use an instrumental variable estimator. The core results in this paper also generalise to more complicated nonlinear models involving integrated time series.
Journal of Econometrics | 2016
Marcelo C. Medeiros; Eduardo F. Mendes
arXiv: Methodology | 2014
Christopher K. Carter; Eduardo F. Mendes; Robert Kohn
Annals of the Institute of Statistical Mathematics | 2015
Marcelo Fernandes; Eduardo F. Mendes; Olivier Scaillet
Archive | 2014
Eduardo F. Mendes; Christopher K. Carter; Robert Kohn
Archive | 2008
Eduardo F. Mendes; Les Oxley; Marco Reale