Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo Fernandez-Megia is active.

Publication


Featured researches published by Eduardo Fernandez-Megia.


Angewandte Chemie | 2011

Reliable and Efficient Procedures for the Conjugation of Biomolecules through Huisgen Azide–Alkyne Cycloadditions

Enrique Lallana; Ricardo Riguera; Eduardo Fernandez-Megia

The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been established as a powerful coupling technology for the conjugation of proteins, nucleic acids, and polysaccharides. Nevertheless, several shortcomings related to the presence of Cu, mainly oxidative degradation by reactive oxygen species and sample contamination by Cu, have been pointed out. This Minireview discusses key aspects found in the development of the efficient and benign functionalization of biomacromolecules through CuAAC, as well as the Cu-free strain-promoted azide-alkyne cycloaddition (SPAAC).


Journal of the American Chemical Society | 2009

Surpassing the Use of Copper in the Click Functionalization of Polymeric Nanostructures : A Strain-Promoted Approach

Enrique Lallana; Eduardo Fernandez-Megia; Ricardo Riguera

The limitations (depolymerization and Cu contamination) in the use of Cu(I)-catalyzed azide-alkyne [3 + 2] cycloadditions (CuAAC) for the selective click functionalization of polysaccharide-based systems have been efficiently surpassed using a strain-promoted approach (SPAAC). The SPAAC decoration of chitosan-g-poly(ethylene glycol) nanostructures with an immunoglobulin G under physiological conditions represents a step forward in the preparation of immunonanoparticles.


Pharmaceutical Research | 2012

Click Chemistry for Drug Delivery Nanosystems

Enrique Lallana; Ana Sousa-Herves; Francisco Fernandez-Trillo; Ricardo Riguera; Eduardo Fernandez-Megia

ABSTRACTThe purpose of this Expert Review is to discuss the impact of click chemistry in nanosized drug delivery systems. Since the introduction of the click concept by Sharpless and coworkers in 2001, numerous examples of click reactions have been reported for the preparation and functionalization of polymeric micelles and nanoparticles, liposomes and polymersomes, capsules, microspheres, metal and silica nanoparticles, carbon nanotubes and fullerenes, or bionanoparticles. Among these click processes, Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has attracted most attention based on its high orthogonality, reliability, and experimental simplicity for non-specialists. A renewed interest in the use of efficient classical transformations has been also observed (e.g., thiol-ene coupling, Michael addition, Diels-Alder). Special emphasis is also devoted to critically discuss the click concept, as well as practical aspects of application of CuAAC to ensure efficient and harmless bioconjugation.


The Journal of Neuroscience | 2009

A Nanomedicine Transports a Peptide Caspase-3 Inhibitor across the Blood–Brain Barrier and Provides Neuroprotection

Hulya Karatas; Yeşim Aktaş; Yasemin Gursoy-Ozdemir; Ebru Bodur; Muge Yemisci; Atay Vural; Onur Pinarbasli; Yilmaz Capan; Eduardo Fernandez-Megia; Ramon Novoa-Carballal; Ricardo Riguera; Karine Andrieux; Patrick Couvreur; Turgay Dalkara

Caspases play an important role as mediators of cell death in acute and chronic neurological disorders. Although peptide inhibitors of caspases provide neuroprotection, they have to be administered intracerebroventricularly because they cannot cross the blood–brain barrier (BBB). Herein, we present a nanocarrier system that can transfer chitosan nanospheres loaded with N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone (Z-DEVD-FMK), a relatively specific caspase-3 inhibitor, across BBB. Caspase-3 was chosen as a pharmacological target because of its central role in cell death. Polyethylene glycol-coated nanospheres were conjugated to an anti-mouse transferrin receptor monoclonal antibody (TfRMAb) that selectively recognizes the TfR type 1 on the cerebral vasculature. We demonstrate with intravital microscopy that this nanomedicine is rapidly transported across the BBB without being measurably taken up by liver and spleen. Pre- or post-treatment (2 h) with intravenously injected Z-DEVD-FMK-loaded nanospheres dose dependently decreased the infarct volume, neurological deficit, and ischemia-induced caspase-3 activity in mice subjected to 2 h of MCA occlusion and 24 h of reperfusion, suggesting that they released an amount of peptide sufficient to inhibit caspase activity. Similarly, nanospheres inhibited physiological caspase-3 activity during development in the neonatal mouse cerebellum on postnatal day 17 after closure of the BBB. Neither nanospheres functionalized with TfRMAb but not loaded with Z-DEVD-FMK nor nanospheres lacking TfRMAb but loaded with Z-DEVD-FMK had any effect on either paradigm, suggesting that inhibition of caspase activity and subsequent neuroprotection were due to efficient penetration of the peptide into brain. Thus, chitosan nanospheres open new and exciting opportunities for brain delivery of biologically active peptides that are useful for the treatment of CNS disorders.


Journal of the American Chemical Society | 2009

Probing the relevance of lectin clustering for the reliable evaluation of multivalent carbohydrate recognition.

Eva Maria Munoz; Juan Correa; Eduardo Fernandez-Megia; Ricardo Riguera

Experiments by Surface Plasmon Resonance (SPR) illustrate the relevance of lectin density for the reliable evaluation of binding efficiencies in surface-based multivalent carbohydrate recognition. The difference between affinity data obtained by solution and surface-based experiments is also stressed.


Pharmaceutical Research | 2012

Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery

Enrique Lallana; Francisco Fernandez-Trillo; Ana Sousa-Herves; Ricardo Riguera; Eduardo Fernandez-Megia

During the last decades, great efforts have been devoted to design polymers for reducing the toxicity, increasing the absorption, and improving the release profile of drugs. Advantage has been also taken from the inherent multivalency of polymers and dendrimers for the incorporation of diverse functional molecules of interest in targeting and diagnosis. In addition, polymeric hydrogels with the ability to encapsulate drugs and cells have been developed for drug delivery and tissue engineering applications. In the long road to this successful story, pharmaceutical sciences have been accompanied by parallel advances in synthetic methodologies allowing the preparation of precise polymeric materials with enhanced properties. In this context, the introduction of the click concept by Sharpless and coworkers in 2001 focusing the attention on modularity and orthogonality has greatly benefited polymer synthesis, an area where reaction efficiency and product purity are significantly challenged. The purpose of this Expert Review is to discuss the impact of click chemistry in the preparation and functionalization of polymers, dendrimers, and hydrogels of interest in drug delivery.


Journal of the American Chemical Society | 2013

Real-Time Evaluation of Binding Mechanisms in Multivalent Interactions: A Surface Plasmon Resonance Kinetic Approach

Eva Maria Munoz; Juan Correa; Ricardo Riguera; Eduardo Fernandez-Megia

Multivalency is a key, ubiquitous phenomenon in nature characterized by a complex combination of binding mechanisms, with special relevance in carbohydrate-lectin recognition. Herein we introduce an original surface plasmon resonance kinetic approach to analyze multivalent interactions that has been validated with dendrimers as monodisperse multivalent analytes binding to lectin clusters. The method, based on the analysis of early association and late dissociation phases of the sensorgrams provides robust information of the glycoconjugate binding efficiency and real-time structural data of the binding events under the complex scenario of the glyco-cluster effect. Notably, it reveals the dynamic nature of the interaction and offers experimental evidence on the contribution of binding mechanisms.


New Journal of Chemistry | 2012

PEG-dendritic block copolymers for biomedical applications

Ana Sousa-Herves; Ricardo Riguera; Eduardo Fernandez-Megia

The incorporation of poly(ethylene glycol) (PEG) chains at the focal point of dendrimers results in customizable platforms where the careful selection of the PEG length, the nature of the peripheral groups, and the structure and generation of the dendritic block entail materials for specific applications in the biomedical field. In this focus article, the synthesis, properties, and biomedical applications of PEG-dendritic block copolymers are discussed with examples in drug and gene delivery, tissue repair, and diagnosis.


Biomacromolecules | 2010

Dendrimers as Potential Inhibitors of the Dimerization of the Capsid Protein of HIV-1

Rosa Domènech; Olga Abian; Rebeca Bocanegra; Juan Correa; Ana Sousa-Herves; Ricardo Riguera; Mauricio G. Mateu; Eduardo Fernandez-Megia; Adrián Velázquez-Campoy; José L. Neira

Assembly of the mature human immunodeficiency virus type 1 capsid involves the oligomerization of the capsid protein, CA. The C-terminal domain of CA, CTD, participates both in the formation of CA hexamers and in the joining of hexamers through homodimerization. Intact CA and the isolated CTD are able to homodimerize in solution with similar affinity (dissociation constant in the order of 10 microM); CTD homodimerization involves mainly an alpha-helical region. In this work, we show that first-generation gallic acid-triethylene glycol (GATG) dendrimers bind to CTD. The binding region is mainly formed by residues involved in the homodimerization interface of CTD. The dissociation constant of the dendrimer-CTD complexes is in the range of micromolar, as shown by ITC. Further, the affinity for CTD of some of the dendrimers is similar to that of synthetic peptides capable of binding to the dimerization region, and it is also similar to the homodimerization affinity of both CTD and CA. Moreover, one of the dendrimers, with a relatively large hydrophobic moiety at the dendritic branching (a benzoate), was able to hamper the assembly in vitro of the human immunodeficiency virus capsid. These results open the possibility of considering dendrimers as lead compounds for the development of antihuman immunodeficiency virus drugs targeting capsid assembly.


Expert Opinion on Drug Delivery | 2012

Polypeptides and polyaminoacids in drug delivery

José Vicente González-Aramundiz; M. V. Lozano; Ana Sousa-Herves; Eduardo Fernandez-Megia; Noemi Csaba

Introduction: Advances achieved over the last few years in drug delivery have provided novel and versatile possibilities for the treatment of various diseases. Among the biomaterials applied in this field, it is worth highlighting the increasing importance of polyaminoacids and polypeptides. The appealing properties of these polymers are very promising for the design of novel compositions in a variety of drug delivery applications. Areas covered: This review provides an overview on the general characteristics of polyaminoacids and polypeptides and briefly discusses different synthetic pathways for their production. This is followed by a detailed description of different drug delivery applications of these polymers, emphasizing those examples that already reached advanced preclinical development or have entered clinical trials. Expert opinion: Polyaminoacids and polypeptides are gaining much attention in drug delivery due to their exceptional properties. Their application as polymers for drug delivery purposes has been sped up by the significant achievements related to their synthesis. Certainly, cancer therapy has benefited the most from these advances, although other fields such as vaccine delivery and alternative administration routes are also being successfully explored. The design of new entities based on polyaminoacids and polypeptides and the improved insight gained in drug delivery guarantee exciting findings in the near future.

Collaboration


Dive into the Eduardo Fernandez-Megia's collaboration.

Top Co-Authors

Avatar

Ricardo Riguera

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Correa

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ana Sousa-Herves

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

María J. Alonso

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Marcos Fernandez-Villamarin

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Enrique Lallana

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Luiz F. Pinto

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Javier Sardina

University of Santiago de Compostela

View shared research outputs
Researchain Logo
Decentralizing Knowledge