Eduardo José Peña
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eduardo José Peña.
Plant Journal | 2010
Maurice O. Ouko; Adrian Sambade; Katrin Brandner; Annette Niehl; Eduardo José Peña; Abdul Ahad; Manfred Heinlein; Peter Nick
A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T-DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, alpha-tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus-end marker GFP-EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell-to-cell movement of TMV encoding GFP-tagged movement protein (MP-GFP) is reduced in ATER2 accompanied by a reduced association of MP-GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.
Plant Journal | 2013
Annette Niehl; Eduardo José Peña; Khalid Amari; Manfred Heinlein
Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.
Journal of Biotechnology | 2011
Carina Andrea Reyes; Agustina De Francesco; Eduardo José Peña; Norma Costa; María Inés Plata; Lorena Noelia Sendín; Atilio Pedro Castagnaro; María Laura García
The lack of naturally occurring resistance to Citrus psorosis virus (CPsV) has demanded exploitation of a transgenic approach for the development of CPsV-resistant sweet orange plants. Transgenic sweet orange plants producing intron-hairpin RNA transcripts (ihpRNA) corresponding to viral cp, 54K or 24K genes were generated and analyzed at the molecular and phenotypic levels. Two independent CPsV challenge assays demonstrated that expression of ihpRNA derived from the cp gene (ihpCP) provided a high level of virus resistance, while those derived from 54K and 24K genes (ihp54K and ihp24K) provided partial or no resistance. The presence of small interfering RNA molecules (siRNAs) in the ihpCP transgenic sweet orange plants prior to virus challenge, indicated that CPsV resistance was due to pre-activated RNA silencing, but siRNAs accumulation level was not directly correlated to the degree of the triggered virus resistance among the different lines. However, pre-activation of the RNA-silencing machinery and a certain minimum accumulation level of siRNA molecules targeting the viral genome are key factors for creating virus-resistant plants. This is the first report of resistance in citrus plants against a negative-strand RNA virus as CPsV.
Journal of Cell Science | 2015
Henrik Buschmann; Jacqueline Dols; Sarah Kopischke; Eduardo José Peña; Miguel A. Andrade-Navarro; Manfred Heinlein; Daniel B. Szymanski; Sabine Zachgo; John H. Doonan; Clive W. Lloyd
ABSTRACT The preprophase band of microtubules performs the crucial function of marking the plane of cell division. Although the preprophase band depolymerises at the onset of mitosis, the division plane is ‘memorized’ by a cortical division zone to which the phragmoplast is attracted during cytokinesis. Proteins have been discovered that are part of the molecular memory but little is known about how they contribute to phragmoplast guidance. Previously, we found that the microtubule-associated protein AIR9 is found in the cortical division zone at preprophase and returns during cell plate insertion but is absent from the cortex during the intervening mitosis. To identify new components of the preprophase memory, we searched for proteins that interact with AIR9. We detected the kinesin-like calmodulin-binding protein, KCBP, which can be visualized at the predicted cortical site throughout division. A truncation study of KCBP indicates that its MyTH4-FERM domain is required for linking the motor domain to the cortex. These results suggest a mechanism by which minus-end-directed KCBP helps guide the centrifugally expanding phragmoplast to the cortical division site.
Frontiers in Plant Science | 2012
Eduardo José Peña; Manfred Heinlein
Studies during the last 25 years have provided increasing evidence for the ability of plants to support the cell-to-cell and systemic transport of RNA molecules and that this process plays a role in plant development and in the systemic orchestration of cellular responses against pathogens and other environmental challenges. Since RNA viruses exploit the cellular RNA transport machineries for spreading their genomes between cells they represent convenient models to investigate the underlying mechanisms. In this regard, the intercellular spread of Tobacco mosaic virus (TMV) has been studied for many years. The RNA of TMV moves cell-to-cell in a non-encapsidated form in a process depending on virus-encoded movement protein (MP). Here, we discuss the current state of the art in studies using TMV and its MP as a model for RNA transport. While the ability of plants to transport viral and cellular RNA molecules is consistent with RNA transport phenomena in other systems, further studies are needed to increase our ability to visualize viral RNA (vRNA) in vivo and to distinguish RNA-transport related processes from those involved in antiviral defense.
Current Opinion in Plant Biology | 2013
Eduardo José Peña; Manfred Heinlein
Anisotropic cell growth and the ability of plant cells to communicate within and across the borders of cellular and supracellular domains depends on the ability of the cells to dynamically establish polarized networks able to deliver structural and informational macromolecules to distinct cellular sites. Studies of organelle movements and transport of endogenous and viral proteins suggest that organelle and macromolecular trafficking pathways involve transient or stable interactions with cortical microtubule-associated endoplasmic reticulum sites (C-MERs). The observations suggest that C-MERs may function as cortical hubs that organize cargo exchange between organelles and allow the recruitment, assembly, and subsequently site-specific delivery of macromolecular complexes. We propose that viruses interact with such hubs for replication and intercellular spread.
Virology | 2013
Gabriel Robles Luna; Eduardo José Peña; María Belén Borniego; Manfred Heinlein; María Laura García
Citrus psorosis virus (CPsV) and Mirafiori lettuce big-vein virus (MiLBVV), members of the Ophioviridae family, have segmented negative-sense single-stranded RNA genomes. To date no reports have described how ophioviruses spread within host plants and/or the proteins involved in this process. Here we show that the 54K protein of CPsV is encoded by RNA 2 and describe its subcellular distribution. Upon transient expression in Nicotiana benthamiana epidermal cells the 54K protein, and also its 54K counterpart protein of MiLBVV, localize to plasmodesmata and enhance GFP cell-to-cell diffusion between cells. Both proteins, but not the coat proteins (CP) of the respective viruses, functionally trans-complement cell-to-cell movement-defective Potato virus X (PVX) and Tobacco mosaic virus (TMV) mutants. The 54K and 54K proteins interact with the virus-specific CP in the cytoplasm, suggesting a potential role of CP in ophiovirus movement. This is the first study characterizing the movement proteins (MP) of ophioviruses.
ChemBioChem | 2012
Jacques Lux; Eduardo José Peña; Frédéric Bolze; Manfred Heinlein; Jean François Nicoud
The design, preparation and characterisation of a library of malachite green (MG) derivatives for two‐photon RNA labelling is described. Some of these MG derivatives exhibit an increased affinity for an MG‐aptamer, as well as improved two‐photon sensitivity when compared to the classical malachite green chloride. The underlying mechanisms and potential benefits for in vivo RNA visualisation are discussed.
PLOS ONE | 2014
Eduardo José Peña; Inmaculada Ferriol; A. Sambade; Henrik Buschmann; Annette Niehl; Santiago F. Elena; Luis Rubio; Manfred Heinlein
The cytoskeleton is a dynamic network composed of filamentous polymers and regulatory proteins that provide a flexible structural scaffold to the cell and plays a fundamental role in developmental processes. Mutations that alter the spatial orientation of the cortical microtubule (MT) array of plants are known to cause important changes in the pattern of cell wall synthesis and developmental phenotypes; however, the consequences of such alterations on other MT-network-associated functions in the cytoplasm are not known. In vivo observations suggested a role of cortical MTs in the formation and movement of Tobacco mosaic virus (TMV) RNA complexes along the endoplasmic reticulum (ER). Thus, to probe the significance of dynamic MT behavior in the coordination of MT-network-associated functions related to TMV infection and, thus, in the formation and transport of RNA complexes in the cytoplasm, we performed an evolution experiment with TMV in Arabidopsis thaliana tor1/spr2 and tor2 mutants with specific defects in MT dynamics and asked whether TMV is sensitive to these changes. We show that the altered cytoskeleton induced genetic changes in TMV that were correlated with efficient spread of infection in the mutant hosts. These observations demonstrate a role of dynamic MT rearrangements and of the MT-associated protein TORTIFOLIA1/SPIRAL2 in cellular functions related to virus spread and indicate that MT dynamics and MT-associated proteins represent constraints for virus evolution and adaptation. The results highlight the importance of the dynamic plasticity of the MT network in directing cytoplasmic functions in macromolecular assembly and trafficking and illustrate the value of experimental virus evolution for addressing the cellular functions of dynamic, long-range order systems in multicellular organisms.
Molecular Plant Pathology | 2016
Cèlia Guiu-Aragonés; María Amelia Sánchez-Pina; Juan A. Díaz-Pendón; Eduardo José Peña; Manfred Heinlein; Ana Montserrat Martín-Hernández
Summary Cucumber mosaic virus (CMV) has the broadest host range among plant viruses, causing enormous losses in agriculture. In melon, strains of subgroup II are unable to establish a systemic infection in the near‐isogenic line SC12‐1‐99, which carries the recessive resistance gene cmv1 from the accession PI 161375, cultivar ‘Songwhan Charmi’. Strains of subgroup I overcome cmv1 resistance in a manner dependent on the movement protein. We characterized the resistance conferred by cmv1 and established that CMV‐LS (subgroup II) can move from cell to cell up to the veins in the inoculated leaf, but cannot enter the phloem. Immunogold labelling at transmission electron microscopy level showed that CMV‐LS remains restricted to the bundle sheath (BS) cells in the resistant line, and does not invade vascular parenchyma or intermediary cells, whereas, in the susceptible line ‘Piel de Sapo’ (PS), the virus invades all vein cell types. These observations indicate that the resistant allele of cmv1 restricts systemic infection in a virus strain‐ and cell type‐specific manner by acting as an important gatekeeper for virus progression from BS cells to phloem cells. Graft inoculation experiments showed that CMV‐LS cannot move from the infected PS stock into the resistant cmv1 scion, thus suggesting an additional role for cmv1 related to CMV transport within or exit from the phloem. The characterization of this new form of recessive resistance, based on a restriction of virus systemic movement, opens up the possibility to design alternative approaches for breeding strategies in melon.