Eduardo López-Larraz
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eduardo López-Larraz.
Journal of Neuroengineering and Rehabilitation | 2014
Eduardo López-Larraz; Luis Montesano; Ángel Gil-Agudo; Javier Minguez
BackgroundBrain-machine interfaces (BMI) have recently been integrated within motor rehabilitation therapies by actively involving the central nervous system (CNS) within the exercises. For instance, the online decoding of intention of motion of a limb from pre-movement EEG correlates is being used to convert passive rehabilitation strategies into active ones mediated by robotics. As early stages of upper limb motor rehabilitation usually focus on analytic single-joint mobilizations, this paper investigates the feasibility of building BMI decoders for these specific types of movements.MethodsTwo different experiments were performed within this study. For the first one, six healthy subjects performed seven self-initiated upper-limb analytic movements, involving from proximal to distal articulations. For the second experiment, three spinal cord injury patients performed two of the previously studied movements with their healthy elbow and paralyzed wrist. In both cases EEG neural correlates such as the event-related desynchronization (ERD) and movement related cortical potentials (MRCP) were analyzed, as well as the accuracies of continuous decoders built using the pre-movement features of these correlates (i.e., the intention of motion was decoded before movement onset).ResultsThe studied movements could be decoded in both healthy subjects and patients. For healthy subjects there were significant differences in the EEG correlates and decoding accuracies, dependent on the moving joint. Percentages of correctly anticipated trials ranged from 75% to 40% (with chance level being around 20%), with better performances for proximal than for distal movements. For the movements studied for the SCI patients the accuracies were similar to the ones of the healthy subjects.ConclusionsThis paper shows how it is possible to build continuous decoders to detect movement intention from EEG correlates for seven different upper-limb analytic movements. Furthermore we report differences in accuracies among movements, which might have an impact on the design of the rehabilitation technologies that will integrate this new type of information. The applicability of the decoders was shown in a clinical population, with similar performances between healthy subjects and patients.
Frontiers in Neuroscience | 2016
Eduardo López-Larraz; Fernando Trincado-Alonso; Vijaykumar Rajasekaran; Soraya Pérez-Nombela; Antonio J. del-Ama; Joan Aranda; Javier Minguez; Ángel Gil-Agudo; Luis Montesano
The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain–machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton—without any weight or balance support—for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).
international conference of the ieee engineering in medicine and biology society | 2012
Eduardo López-Larraz; Javier Mauricio Antelis; Luis Montesano; Ángel Gil-Agudo; Javier Minguez
Spinal cord injury (SCI) associates brain reorganization with a loss of cortical representation of paralyzed limbs. This effect is more pronounced in the chronic state, which can be reached approximately 6 months after the lesion. As many of the brain-computer interfaces (BCI) developed to date rely on the user motor activity, loss of this activity hinders the application of BCI technology for rehabilitation or motor compensation in these patients. This work is a preliminary study with three quadriplegic patients close to reaching the chronic state, addressing two questions: (i) whether it is still possible to use BCI technology to detect motor intention of the paralyzed hand at this state of chronicity; and (ii) whether it is better for the BCI decoding to rely on the motor attempt or the motor imagery of the hand as mental paradigm. The results show that one of the three patients had already lost the motor programs related to the hand, so it was not possible to build a motor-related BCI for him. For the other patients it was suitable to design a BCI based on both paradigms, but the results were better using motor attempt as it has broader activation associated patterns that are easier to recognize.
PLOS ONE | 2015
Eduardo López-Larraz; Luis Montesano; Ángel Gil-Agudo; Javier Minguez; Antonio Oliviero
Spinal cord injury (SCI) does not only produce a lack of sensory and motor function caudal to the level of injury, but it also leads to a progressive brain reorganization. Chronic SCI patients attempting to move their affected limbs present a significant reduction of brain activation in the motor cortex, which has been linked to the deafferentation. The aim of this work is to study the evolution of the motor-related brain activity during the first months after SCI. Eighteen subacute SCI patients were recruited to participate in bi-weekly experimental sessions during at least two months. Their EEG was recorded to analyze the temporal evolution of the event-related desynchronization (ERD) over the motor cortex, both during motor attempt and motor imagery of their paralyzed hands. The results show that the α and β ERD evolution after SCI is negatively correlated with the clinical progression of the patients during the first months after the injury. This work provides the first longitudinal study of the event-related desynchronization during the subacute phase of spinal cord injury. Furthermore, our findings reveal a strong association between the ERD changes and the clinical evolution of the patients. These results help to better understand the brain transformation after SCI, which is important to characterize the neuroplasticity mechanisms involved after this lesion and may lead to new strategies for rehabilitation and motor restoration of these patients.
international conference of the ieee engineering in medicine and biology society | 2010
Eduardo López-Larraz; Oscar Martinez Mozos; Javier Mauricio Antelis; Javier Minguez
This paper presents a silent-speech interface based on electromyographic (EMG) signals recorded in the facial muscles. The distinctive feature of this system is that it is based on the recognition of syllables instead of phonemes or words, which is a compromise between both approaches with advantages as (a) clear delimitation and identification inside a word, and (b) reduced set of classification groups. This system transforms the EMG signals into robust-in-time feature vectors and uses them to train a boosting classifier. Experimental results demonstrated the effectiveness of our approach in three subjects, providing a mean classification rate of almost 70% (among 30 syllables).
Archive | 2014
Guillermo Asin Prieto; Roberto Cano-de-la-Cuerda; Eduardo López-Larraz; J. Metrot; Marco Molinari; Liesjet van Dokkum
Poststroke characteristics vary significantly between patients and over time, necessitating the introduction of individualized therapy. To provide the appropriate therapy to a patient at the correct time, several theoretical considerations must be taken into account—from a clear delineation of rehabilitation goals to an understanding of how a certain therapy can influence the underlying neuroplasticity. With regard to the differences between upper and lower limb motor recovery, both domains have experienced a change in perspective on rehabilitation. In gait training, assist-as-needed rehabilitation paradigms have become more pertinent, allowing each patient to find his/her individual walking rhythm and style within healthy boundaries. With the introduction of robotics in upper limb training (with or without virtual reality games that are attached), the amount of training and feedback that is provided to a patient can be increased without a rise in cost. The emerging consensus is to consider the various motor therapies and pharmacological interventions as part of a single, large toolbox instead of separate entities, guiding us toward a more patient-therapist-tailored approach, which is demonstrating tremendous efficacy.
international conference of the ieee engineering in medicine and biology society | 2010
Eduardo López-Larraz; Iñaki Iturrate; Luis Montesano; Javier Minguez
Feedback error-related potentials are a promising brain process in the field of rehabilitation since they are related to human learning. Due to the fact that many therapeutic strategies rely on the presentation of feedback stimuli, potentials generated by these stimuli could be used to ameliorate the patients progress. In this paper we propose a method that can identify, in real-time, feedback evoked potentials in a time-estimation task. We have tested our system with five participants in two different days with a separation of three weeks between them, achieving a mean single-trial detection performance of 71.62% for real-time recognition, and 78.08% in offline classification. Additionally, an analysis of the stability of the signal between the two days is performed, suggesting that the feedback responses are stable enough to be used without the needing of training again the user.
international conference on rehabilitation robotics | 2017
Andrea Sarasola-Sanz; Nerea Irastorza-Landa; Eduardo López-Larraz; Carlos Bibian; Florian Helmhold; Doris Broetz; Niels Birbaumer; Ander Ramos-Murguialday
Including supplementary information from the brain or other body parts in the control of brain-machine interfaces (BMIs) has been recently proposed and investigated. Such enriched interfaces are referred to as hybrid BMIs (hBMIs) and have been proven to be more robust and accurate than regular BMIs for assistive and rehabilitative applications. Electromyographic (EMG) activity is one of the most widely utilized biosignals in hBMIs, as it provides a quite direct measurement of the motion intention of the user. Whereas most of the existing non-invasive EEG-EMG-hBMIs have only been subjected to offline testings or are limited to one degree of freedom (DoF), we present an EEG-EMG-hBMI that allows the simultaneous control of 7-DoFs of the upper limb with a robotic exoskeleton. Moreover, it establishes a biologically-inspired hierarchical control flow, requiring the active participation of central and peripheral structures of the nervous system. Contingent visual and proprioceptive feedback about the users EEG and EMG activity is provided in the form of velocity modulation during functional task training. We believe that training with this closed-loop system may facilitate functional neuroplastic processes and eventually elicit a joint brain and muscle motor rehabilitation. Its usability is validated during a real-time operation session in a healthy participant and a chronic stroke patient, showing encouraging results for its application to a clinical rehabilitation scenario.
international conference of the ieee engineering in medicine and biology society | 2011
Eduardo López-Larraz; Marco Creatura; Iñaki Iturrate; Luis Montesano; Javier Minguez
Feedback stimuli are fundamental components in Brain-Computer Interfaces. It is known that the presentation of feedback stimuli elicits certain brain potentials that can be measured and classified. As stimuli can be given through different sensory modalities, it is important to understand the effects of different types of feedback on brain responses and their impact on classification. This paper presents a protocol used to obtain brain potentials elicited by visual, auditive or vibrotactile feedback stimuli. Experiments were carried out with five different subjects for each modality. Four different single-trial classification strategies were compared, according to the information used to train the classifier, achieving a classification rate of approximately 80% for each modality.
international conference of the ieee engineering in medicine and biology society | 2011
Eduardo López-Larraz; Inaki Iterate; Carlos López Escolano; Isabel García; Luis Montesano; Javier Minguez
Neurofeedback therapies are an emerging technique used to treat neuropsychological disorders and to enhance cognitive performance. The feedback stimuli presented during the therapy are a key factor, serving as guidance throughout the entire learning process of the brain rhythms. Online decoding of these stimuli could be of great value to measure the compliance and adherence of the subject to the training. This paper describes the modeling and classification of performance feedback potentials with a Brain-Computer Interface (BCI), under a real neurofeedback training with five subjects. LDA and SVM classification techniques are compared and are both able to provide an average performance of approximately 80%.