Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo M. Bringa is active.

Publication


Featured researches published by Eduardo M. Bringa.


Nano Letters | 2012

Are nanoporous materials radiation resistant

Eduardo M. Bringa; J. D. Monk; A. Caro; A. Misra; Luis A. Zepeda-Ruiz; M. Duchaineau; F. Abraham; Michael Nastasi; S. T. Picraux; Y.Q. Wang; Diana Farkas

The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKAs energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.


Journal of Applied Physics | 2004

Atomistic Shock Hugoniot simulation of single-crystal copper

Eduardo M. Bringa; J. U. Cazamias; Paul Erhart; James S. Stolken; N. Tanushev; Brian D. Wirth; Robert E. Rudd; Maria Jose Caturla

Planar shock waves in single-crystal copper were simulated using nonequilibrium molecular dynamics with a realistic embedded atom potential. The simulation results are in good agreement with new experimental data presented here, for the Hugoniot of single-crystal copper along ⟨100⟩. Simulations were performed for Hugoniot pressures in the range 2 GPa – 800 GPa, up to well above the shock induced melting transition. Large anisotropies are found for shock propagation along ⟨100⟩,⟨110⟩, and ⟨111⟩, with quantitative differences from pair potentials results. Plastic deformation starts at Up≳0.75km∕s, and melting occurs between 200 and 220 GPa, in agreement with the experimental melting pressure of polycrystalline copper. The Voigt and Reuss averages of our simulated Hugoniot do not compare well below melting with the experimental Hugoniot of polycrystalline copper. This is possibly due to experimental targets with preferential texturing and/or a much lower Hugoniot elastic limit.


Applied Physics Letters | 2006

Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations

M. A. Shehadeh; Eduardo M. Bringa; Hussein M. Zbib; J. M. McNaney; B. A. Remington

A model of plasticity that couples discrete dislocation dynamics and finite element analysis is used to investigate shock-induced dislocation nucleation in copper single crystals. Homogeneous nucleation of dislocations is included based on large-scale atomistic shock simulations. The resulting prodigious rate of dislocation production takes the uniaxialy compressed material to a hydrostatically compressed state after a few tens of picoseconds. The density of dislocations produced in a sample with preexisting dislocation sources decreases slightly as shock rise time increases, implying that relatively lower densities would be expected for isentropic loading using extremely long rise times as suggested experimentally.


Materials Science and Technology | 2006

Material dynamics under extreme conditions of pressure and strain rate

B. A. Remington; P. Allen; Eduardo M. Bringa; James Hawreliak; D. Ho; K. T. Lorenz; H. E. Lorenzana; J. M. McNaney; Marc A. Meyers; S. W. Pollaine; K. Rosolankova; B. Sadik; M. S. Schneider; D. Swift; J. S. Wark; B. Yaakobi

Abstract Solid state experiments at extreme pressures (10–100 GPa) and strain rates (106–108s−1) are being developed on high energy laser facilities, and offer the possibility for exploring new regimes of materials science. These extreme solid state conditions can be accessed with either shock loading or with a quasi-isentropic ramped pressure drive. Velocity interferometer measurements establish the high pressure conditions. Constitutive models for solid state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth from the Rayleigh–Taylor instability in solid state samples. Lattice compression, phase and temperature are deduced from extended X-ray absorption fine structure (EXAFS) measurements, from which the shock induced α–ω phase transition in Ti and the α–ϵ phase transition in Fe, are inferred to occur on subnanosec time scales. Time resolved lattice response and phase can also be measured with dynamic X-ray diffraction measurements, where the elastic–plastic (1D–3D) lattice relaxation in shocked Cu is shown to occur promptly (<1 ns). Subsequent large scale molecular dynamics (MD) simulations elucidate the microscopic dislocation dynamics that underlies this 1D–3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. The slip-twinning threshold in single crystal Cu shocked along the [001] direction is shown to occur at shock strengths of ∼20 GPa, whereas the corresponding transition for Cu shocked along the [134] direction occurs at higher shock strengths. This slip twinning threshold also depends on the stacking fault energy (SFE), being lower for low SFE materials. Designs have been developed for achieving much higher pressures, P>1000 GPa, in the solid state on the National Ignition Facility (NIF) laser.


Applied Physics Letters | 2006

Deforming nanocrystalline nickel at ultrahigh strain rates

Yinmin Wang; Eduardo M. Bringa; J. M. McNaney; M. Victoria; A. Caro; Andrea M. Hodge; Raymond F. Smith; Ben Torralva; B. A. Remington; Christopher A. Schuh; H. Jamarkani; Marc A. Meyers

The deformation mechanism of nanocrystalline Ni (with grain sizes in the range of 30–100 nm) at ultrahigh strain rates (>107s−1) was investigated. A laser-driven compression process was applied to achieve high pressures (20–70 GPa) on nanosecond timescales and thus induce high-strain-rate deformation in the nanocrystalline Ni. Postmortem transmission electron microscopy examinations revealed that the nanocrystalline structures survive the shock deformation, and that dislocation activity is a prevalent deformation mechanism for the grain sizes studied. No deformation twinning was observed even at stresses more than twice the threshold for twin formation in micron-sized polycrystals. These results agree qualitatively with molecular dynamics simulations and suggest that twinning is a difficult event in nanocrystalline Ni under shock-loading conditions.


Applied Physics Letters | 2005

Atomistic modeling of shock-induced void collapse in copper

Lilian P. Dávila; Paul Erhart; Eduardo M. Bringa; Marc A. Meyers; Vlado A. Lubarda; M. S. Schneider; Richard Becker; Mukul Kumar

Nonequilibrium molecular-dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.


The Astrophysical Journal | 2007

ENERGETIC PROCESSING OF INTERSTELLAR SILICATE GRAINS BY COSMIC RAYS

Eduardo M. Bringa; S. O. Kucheyev; M. J. Loeffler; Raul A. Baragiola; A. G. G. M. Tielens; Zhen Ru Dai; G. A. Graham; Sasa Bajt; James P. Bradley; Catherine Ann Dukes; Thomas E. Felter; D. F. Torres; W. van Breugel

While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively ‘‘low’’ energy, heavy-ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg2SiO4) amorphizes when irradiated by 10 MeV Xe ions at large enoughfluences.Usingmodeling,weextrapolatetheseresultstoshowthat0.1Y5.0GeVheavy-ioncosmicrayscan rapidly (� 70 Myr) amorphize crystalline silicate grains ejected by stars into the interstellar medium. Subject headingg cosmic rays — dust, extinction Online material: color figures


Applied Physics Letters | 2012

Surface effects on the radiation response of nanoporous Au foams

Engang Fu; M. Caro; Luis A. Zepeda-Ruiz; Y.Q. Wang; K. Baldwin; Eduardo M. Bringa; M. Nastasi; A. Caro

We report on an experimental and simulation campaign aimed at exploring the radiation response of nanoporous Au (np-Au) foams. We find different defect accumulation behavior by varying radiation dose-rate in ion-irradiated np-Au foams. Stacking fault tetrahedra are formed when np-Au foams are irradiated at high dose-rate, but they do not seem to be formed in np-Au at low dose-rate irradiation. A model is proposed to explain the dose-rate dependent defect accumulation based on these results.


High-Power Laser Ablation 2004 | 2004

Computer modeling of laser melting and spallation of metal targets

Leonid V. Zhigilei; Dmitriy S. Ivanov; Elodie Leveugle; Babak Sadigh; Eduardo M. Bringa

The mechanisms of melting and photomechanical damage/spallation occurring under extreme superheating/deformation rate conditions realized in short pulse laser processing are investigated in a computational study performed with a hybrid atomistic-continuum model. The model combines classical molecular dynamics method for simulation of non-equilibrium processes of lattice superheating and fast phase transformations with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons. The kinetics and microscopic mechanisms of melting are investigated in simulations of laser interaction with free-standing Ni films and bulk targets. A significant reduction of the overheating required for the initiation of homogeneous melting is observed and attributed to the relaxation of laser-induced stresses, which leads to the uniaxial expansion and associated anisotropic lattice distortions. The evolution of photomechanical damage is investigated in a large-scale simulation of laser spallation of a 100 nm Ni film. The evolution of photomechanical damage is observed to take place in two stages, the initial stage of void nucleation and growth, when both the number of voids and the range of void sizes are increasing, followed by the void coarsening, coalescence and percolation, when large voids grow at the expense of the decreasing population of small voids. In both regimes the size distributions of voids are found to be well described by the power law with an exponent gradually increasing with time. A good agreement of the results obtained for the evolution of photomechanical damage in a metal film with earlier results reported for laser spallation of molecular systems and shock-induced back spallation in metals suggests that the observed processes of void nucleation, growth and coalescence may reflect general characteristics of the dynamic fracture at high deformation rates.


Physics of Plasmas | 2003

High-pressure, high-strain-rate lattice response of shocked materials

D. H. Kalantar; J. Belak; Eduardo M. Bringa; Kimberly Susan Budil; Maria Jose Caturla; Jeffrey D. Colvin; M. Kumar; K. T. Lorenz; Robert E. Rudd; James S. Stolken; A. M. Allen; K. Rosolankova; J. S. Wark; Marc A. Meyers; M. S. Schneider

Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the published Hugoniot Elastic Limit (HEL) for these materials. In situ x-ray diffraction has been used to directly measure the response of the shocked lattice during shock loading. Static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. In addition, experiments were conducted using a wide-angle detector to record x rays diffracted from multiple lattice planes simultaneously. These data showed uniaxial compression of Si (100) along the shock direction and three-dimensional compression of Cu (100). In the case of the Si diffraction, there was a multiple wave structure observed. This is evaluated to determine whether there is a phase transition occurring on the time scale of the experiments, or the HEL is much higher than previously reported. Results of the measurements are presented.

Collaboration


Dive into the Eduardo M. Bringa's collaboration.

Top Co-Authors

Avatar

Marc A. Meyers

University of California

View shared research outputs
Top Co-Authors

Avatar

B. A. Remington

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carlos J. Ruestes

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Caro

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James Hawreliak

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge