Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo P. C. Rocha is active.

Publication


Featured researches published by Eduardo P. C. Rocha.


PLOS Genetics | 2009

Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths

Marie Touchon; Claire Hoede; Olivier Tenaillon; Valérie Barbe; Simon Baeriswyl; Philippe Bidet; Edouard Bingen; Stéphane Bonacorsi; Christiane Bouchier; Odile Bouvet; Alexandra Calteau; Hélène Chiapello; Olivier Clermont; Stéphane Cruveiller; Antoine Danchin; Médéric Diard; Carole Dossat; Meriem El Karoui; Eric Frapy; Louis Garry; Jean Marc Ghigo; Anne Marie Gilles; James R. Johnson; Chantal Le Bouguénec; Mathilde Lescat; Sophie Mangenot; Vanessa Martinez-Jéhanne; Ivan Matic; Xavier Nassif; Sophie Oztas

The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genomes long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.


Microbiology and Molecular Biology Reviews | 2010

Mobility of Plasmids

Chris Smillie; M. Pilar Garcillán-Barcia; M. Victoria Francia; Eduardo P. C. Rocha; Fernando de la Cruz

SUMMARY Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.


Journal of Bacteriology | 2009

The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients

Matthew T. G. Holden; Helena M. B. Seth-Smith; Lisa Crossman; Mohammed Sebaihia; Stephen D. Bentley; Ana Cerdeño-Tárraga; Nicholas R. Thomson; Nathalie Bason; Michael A. Quail; Sarah Sharp; Inna Cherevach; Carol Churcher; Ian Goodhead; Heidi Hauser; Nancy Holroyd; Karen Mungall; P. D. Scott; Danielle Walker; Brian R. White; Helen Rose; Pernille Iversen; Dalila Mil-Homens; Eduardo P. C. Rocha; Arsenio M. Fialho; Adam Baldwin; Christopher G. Dowson; Bart Barrell; John R. W. Govan; Peter Vandamme; C. Anthony Hart

Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.


PLOS Genetics | 2005

Comparative and evolutionary analysis of the bacterial homologous recombination systems.

Eduardo P. C. Rocha; Emmanuel Cornet; Bénédicte Michel

Homologous recombination is a housekeeping process involved in the maintenance of chromosome integrity and generation of genetic variability. Although detailed biochemical studies have described the mechanism of action of its components in model organisms, there is no recent extensive assessment of this knowledge, using comparative genomics and taking advantage of available experimental data on recombination. Using comparative genomics, we assessed the diversity of recombination processes among bacteria, and simulations suggest that we missed very few homologs. The work included the identification of orthologs and the analysis of their evolutionary history and genomic context. Some genes, for proteins such as RecA, the resolvases, and RecR, were found to be nearly ubiquitous, suggesting that the large majority of bacterial genomes are capable of homologous recombination. Yet many genomes show incomplete sets of presynaptic systems, with RecFOR being more frequent than RecBCD/AddAB. There is a significant pattern of co-occurrence between these systems and antirecombinant proteins such as the ones of mismatch repair and SbcB, but no significant association with nonhomologous end joining, which seems rare in bacteria. Surprisingly, a large number of genomes in which homologous recombination has been reported lack many of the enzymes involved in the presynaptic systems. The lack of obvious correlation between the presence of characterized presynaptic genes and experimental data on the frequency of recombination suggests the existence of still-unknown presynaptic mechanisms in bacteria. It also indicates that, at the moment, the assessment of the intrinsic stability or recombination isolation of bacteria in most cases cannot be inferred from the identification of known recombination proteins in the genomes.


Annual Review of Genetics | 2008

The organization of the bacterial genome.

Eduardo P. C. Rocha

Many bacterial cellular processes interact intimately with the chromosome. Such interplay is the major driving force of genome structure or organization. Interactions take place at different scales-local for gene expression, global for replication-and lead to the differentiation of the chromosome into organizational units such as operons, replichores, or macrodomains. These processes are intermingled in the cell and create complex higher-level organizational features that are adaptive because they favor the interplay between the processes. The surprising result of selection for genome organization is that gene repertoires change much more quickly than chromosomal structure. Comparative genomics and experimental genomic manipulations are untangling the different cellular and evolutionary mechanisms causing such resilience to change. Since organization results from cellular processes, a better understanding of chromosome organization will help unravel the underlying cellular processes and their diversity.


PLOS Genetics | 2011

The Repertoire of ICE in Prokaryotes Underscores the Unity, Diversity, and Ubiquity of Conjugation

Julien Guglielmini; Leonor Quintais; Maria Pilar Garcillán-Barcia; Fernando de la Cruz; Eduardo P. C. Rocha

Horizontal gene transfer shapes the genomes of prokaryotes by allowing rapid acquisition of novel adaptive functions. Conjugation allows the broadest range and the highest gene transfer input per transfer event. While conjugative plasmids have been studied for decades, the number and diversity of integrative conjugative elements (ICE) in prokaryotes remained unknown. We defined a large set of protein profiles of the conjugation machinery to scan over 1,000 genomes of prokaryotes. We found 682 putative conjugative systems among all major phylogenetic clades and showed that ICEs are the most abundant conjugative elements in prokaryotes. Nearly half of the genomes contain a type IV secretion system (T4SS), with larger genomes encoding more conjugative systems. Surprisingly, almost half of the chromosomal T4SS lack co-localized relaxases and, consequently, might be devoted to protein transport instead of conjugation. This class of elements is preponderant among small genomes, is less commonly associated with integrases, and is rarer in plasmids. ICEs and conjugative plasmids in proteobacteria have different preferences for each type of T4SS, but all types exist in both chromosomes and plasmids. Mobilizable elements outnumber self-conjugative elements in both ICEs and plasmids, which suggests an extensive use of T4SS in trans. Our evolutionary analysis indicates that switch of plasmids to and from ICEs were frequent and that extant elements began to differentiate only relatively recently. According to the present results, ICEs are the most abundant conjugative elements in practically all prokaryotic clades and might be far more frequently domesticated into non-conjugative protein transport systems than previously thought. While conjugative plasmids and ICEs have different means of genomic stabilization, their mechanisms of mobility by conjugation show strikingly conserved patterns, arguing for a unitary view of conjugation in shaping the genomes of prokaryotes by horizontal gene transfer.


Molecular Microbiology | 1999

Universal replication biases in bacteria.

Eduardo P. C. Rocha; Antoine Danchin; Alain Viari

Analysis of 15 complete bacterial chromosomes revealed important biases in gene organization. Strong compositional asymmetries between the genes lying on the leading versus lagging strands were observed at the level of nucleotides, codons and, surprisingly, amino acids. For some species, the bias is so high that the sole knowledge of a protein sequence allows one to predict with almost no errors whether the gene is transcribed from one strand or the other. Furthermore, we show that these biases are not species specific but appear to be universal. These findings may have important consequences in our understanding of fundamental biological processes in bacteria, such as replication fidelity, codon usage in genes and even amino acid usage in proteins.


PLOS Genetics | 2010

The systemic imprint of growth and its uses in ecological (meta)genomics.

Sara Vieira-Silva; Eduardo P. C. Rocha

Microbial minimal generation times range from a few minutes to several weeks. They are evolutionarily determined by variables such as environment stability, nutrient availability, and community diversity. Selection for fast growth adaptively imprints genomes, resulting in gene amplification, adapted chromosomal organization, and biased codon usage. We found that these growth-related traits in 214 species of bacteria and archaea are highly correlated, suggesting they all result from growth optimization. While modeling their association with maximal growth rates in view of synthetic biology applications, we observed that codon usage biases are better correlates of growth rates than any other trait, including rRNA copy number. Systematic deviations to our model reveal two distinct evolutionary processes. First, genome organization shows more evolutionary inertia than growth rates. This results in over-representation of growth-related traits in fast degrading genomes. Second, selection for these traits depends on optimal growth temperature: for similar generation times purifying selection is stronger in psychrophiles, intermediate in mesophiles, and lower in thermophiles. Using this information, we created a predictor of maximal growth rate adapted to small genome fragments. We applied it to three metagenomic environmental samples to show that a transiently rich environment, as the human gut, selects for fast-growers, that a toxic environment, as the acid mine biofilm, selects for low growth rates, whereas a diverse environment, like the soil, shows all ranges of growth rates. We also demonstrate that microbial colonizers of babies gut grow faster than stabilized human adults gut communities. In conclusion, we show that one can predict maximal growth rates from sequence data alone, and we propose that such information can be used to facilitate the manipulation of generation times. Our predictor allows inferring growth rates in the vast majority of uncultivable prokaryotes and paves the way to the understanding of community dynamics from metagenomic data.


Heredity | 2011

What traits are carried on mobile genetic elements, and why?

Daniel J. Rankin; Eduardo P. C. Rocha; S P Brown

Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cells neighbours, or the production of bacteriocins, which harm a cells neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes.


PLOS ONE | 2010

The Small, Slow and Specialized CRISPR and Anti-CRISPR of Escherichia and Salmonella

Marie Touchon; Eduardo P. C. Rocha

Prokaryotes thrive in spite of the vast number and diversity of their viruses. This partly results from the evolution of mechanisms to inactivate or silence the action of exogenous DNA. Among these, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are unique in providing adaptive immunity against elements with high local resemblance to genomes of previously infecting agents. Here, we analyze the CRISPR loci of 51 complete genomes of Escherichia and Salmonella. CRISPR are in two pairs of loci in Escherichia, one single pair in Salmonella, each pair showing a similar turnover rate, repeat sequence and putative linkage to a common set of cas genes. Yet, phylogeny shows that CRISPR and associated cas genes have different evolutionary histories, the latter being frequently exchanged or lost. In our set, one CRISPR pair seems specialized in plasmids often matching genes coding for the replication, conjugation and antirestriction machinery. Strikingly, this pair also matches the cognate cas genes in which case these genes are absent. The unexpectedly high conservation of this anti-CRISPR suggests selection to counteract the invasion of mobile elements containing functional CRISPR/cas systems. There are few spacers in most CRISPR, which rarely match genomes of known phages. Furthermore, we found that strains divergent less than 250 thousand years ago show virtually identical CRISPR. The lack of congruence between cas, CRISPR and the species phylogeny and the slow pace of CRISPR change make CRISPR poor epidemiological markers in enterobacteria. All these observations are at odds with the expectedly abundant and dynamic repertoire of spacers in an immune system aiming at protecting bacteria from phages. Since we observe purifying selection for the maintenance of CRISPR these results suggest that alternative evolutionary roles for CRISPR remain to be uncovered.

Collaboration


Dive into the Eduardo P. C. Rocha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando de la Cruz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge