Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo Pacheco Rico is active.

Publication


Featured researches published by Eduardo Pacheco Rico.


Neurotoxicology and Teratology | 2011

Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets

Eduardo Pacheco Rico; Denis Broock Rosemberg; Kelly Juliana Seibt; Katiucia Marques Capiotti; R.S.M. da Silva; Carla Denise Bonan

Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research.


PLOS ONE | 2011

Differences in Spatio-Temporal Behavior of Zebrafish in the Open Tank Paradigm after a Short-Period Confinement into Dark and Bright Environments

Denis Broock Rosemberg; Eduardo Pacheco Rico; Ben Hur Marins Mussulini; Ângelo L. Piato; Maria Elisa Calcagnotto; Carla Denise Bonan; Renato D. Dias; Rachel E. Blaser; Diogo O. Souza; Diogo Losch de Oliveira

The open tank paradigm, also known as novel tank diving test, is a protocol used to evaluate the zebrafish behavior. Several characteristics have been described for this species, including scototaxis, which is the natural preference for dark environments in detriment of bright ones. However, there is no evidence regarding the influence of “natural stimuli” in zebrafish subjected to novelty-based paradigms. In this report, we evaluated the spatio-temporal exploratory activity of the short-fin zebrafish phenotype in the open tank after a short-period confinement into dark/bright environments. A total of 44 animals were individually confined during a 10-min single session into one of three environments: black-painted, white-painted, and transparent cylinders (dark, bright, and transparent groups). Fish were further subjected to the novel tank test and their exploratory profile was recorded during a 15-min trial. The results demonstrated that zebrafish increased their vertical exploratory activity during the first 6-min, where the bright group spent more time and travelled a higher distance in the top area. Interestingly, all behavioral parameters measured for the dark group were similar to the transparent one. These data were confirmed by automated analysis of track and occupancy plots and also demonstrated that zebrafish display a classical homebase formation in the bottom area of the tank. A detailed spatio-temporal study of zebrafish exploratory behavior and the construction of representative ethograms showed that the experimental groups presented significant differences in the first 3-min vs. last 3-min of test. Although the main factors involved in these behavioral responses still remain ambiguous and require further investigation, the current report describes an alternative methodological approach for assessing the zebrafish behavior after a forced exposure to different environments. Additionally, the analysis of ethologically-relevant patterns across time could be a potential phenotyping tool to evaluate the zebrafish exploratory profile in the open tank task.


Neuropharmacology | 2012

Behavioral effects of taurine pretreatment in zebrafish acutely exposed to ethanol.

Denis Broock Rosemberg; Marcos M. Braga; Eduardo Pacheco Rico; Cássio Morais Loss; Sandro D. Córdova; Ben Hur Marins Mussulini; Rachel E. Blaser; Carlos Eduardo Leite; Maria M. Campos; Renato D. Dias; Maria Elisa Calcagnotto; Diogo Losch de Oliveira; Diogo O. Souza

Taurine (TAU) is an amino sulfonic acid that plays protective roles against neurochemical impairments induced by ethanol (EtOH). Mounting evidence shows the applicability of zebrafish for evaluating locomotor parameters and anxiety-like behavioral phenotypes after EtOH exposure in a large scale manner. In this study, we assess the effects of TAU pretreatment on the behavior of zebrafish in the open tank after acute 1% EtOH (v/v) exposure (20 and 60 min of duration) and on brain alcohol contents. The exposure for 20 min exerted significant anxiolytic effects, which were prevented by 42, 150, and 400 mg/L TAU. Conversely, the 60-min condition induced depressant/sedative effects, in which the changes on vertical activity were associated to modifications on the exploratory profile. Although all TAU concentrations kept locomotor parameters at basal levels, 150 mg/L TAU, did not prevent the impairment on vertical activity of EtOH[60]. Despite the higher brain EtOH content detected in the 60-min exposure, 42, 150, and 400 mg/L TAU attenuated the increase of alcohol content in EtOH[60] group. In conclusion, our data suggest that both protocols of acute EtOH exposure induce significant changes in the spatio-temporal behavior of zebrafish and that TAU may exert a preventive role by antagonizing the effects induced by EtOH possibly due to its neuromodulatory role and also by decreasing brain EtOH levels. The hormetic dose-response of TAU on vertical exploration suggests a complex interaction between TAU and EtOH in the central nervous system.


Comparative Biochemistry and Physiology B | 2010

NTPDase family in zebrafish: Nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart.

Denis Broock Rosemberg; Eduardo Pacheco Rico; Andrei da Silveira Langoni; Jonathan Tesch Spinelli; Talita Carneiro Brandão Pereira; Renato Dutra Dias; Diogo O. Souza; Carla Denise Bonan; Maurício Reis Bogo

The nucleoside triphosphate diphosphohydrolase (NTPDase) family cleaves tri- and diphosphonucleosides to monophosphonucleosides and is responsible for terminating purinergic transmission. Since the NTPDase family in zebrafish is poorly understood, here we evaluated the nucleotide hydrolysis in three tissues of adult zebrafish (brain, liver, and heart), confirmed the presence of distinct NTPDase members by a phylogenetic analysis and verified their relative gene expression profiles in the respective tissues. A different profile of ATP and ADP hydrolysis in the brain, liver, and heart as a function of time and protein concentration was observed. Sodium azide (20mM), ARL 67156 (300 microM) and Suramin (300 microM) differently altered the nucleotide hydrolysis in zebrafish tissues, suggesting the contribution of distinct NTPDase activities. Homology-based searches identified the presence of NTPDase1-6 and NTPDase8 orthologs and the phylogeny also grouped three NTPDase2 and two NTPDase5 paralogs. The deduced amino acid sequences share the apyrase conserved regions, conserved cysteine residues, putative N-glycosylation, phosphorylation, N-acetylation sites, and different numbers of transmembrane domains. RT-PCR experiments revealed the existence of a distinct relative entpd1-6 and entpd8 expression profile in brain, liver, and heart. Taken together, these results indicate that several NTPDase members might contribute to a tight regulation of nucleotide hydrolysis in zebrafish tissues.


Molecular Biology Reports | 2012

Modulatory effect of resveratrol on SIRT1, SIRT3, SIRT4,PGC1α and NAMPT gene expression profiles in wild-type adult zebrafish liver

Helena Schirmer; Talita Carneiro Brandão Pereira; Eduardo Pacheco Rico; Denis Broock Rosemberg; Carla Denise Bonan; Maurício Reis Bogo; André Arigony Souto

Sirtuins (SIRTs) are NAD+-dependent deacetylases that catalyze the hydrolysis of acetyl-lysine residues. They play an important role in many physiological and pathophysiological processes, such as the regulation of lifespan and the prevention of metabolic diseases. In this study, we analyzed the effect of resveratrol on the gene expression levels of SIRT1, SIRT3, SIRT4, PGC1α, and NAMPT, as well as its effect on NAD+ and NADH levels, in the liver of non stressed or non impaired wild-type zebrafish. Semiquantative RT-PCR assays showed that resveratrol did not change the mRNA levels of SIRT1 and PGC1α but decreased the expression levels of the SIRT3, SIRT4, and NAMPT genes. The decrease in NAMPT mRNA levels was accompanied by an increase in NADH levels, thereby decreasing the NAD+/H ratio. Taken together, our results suggest that resveratrol plays a modulatory role in the transcription of the NAMPT, SIRT3, and SIRT4 genes. Zebrafish is an interesting tool that can be used to understand the mechanisms of SIRTs and NAMPT metabolism and to help develop therapeutic compounds. However, further investigations using healthy experimental animals are required to study the modulation of the SIRT and NAMPT genes by resveratrol before it is used as a nutraceutical compound in healthy humans.


PLOS ONE | 2013

Seizures Induced by Pentylenetetrazole in the Adult Zebrafish: A Detailed Behavioral Characterization

Ben Hur Marins Mussulini; Carlos Eduardo Leite; Kamila Cagliari Zenki; Luana Moro; Suelen Baggio; Eduardo Pacheco Rico; Denis Broock Rosemberg; Renato D. Dias; Tadeu Mello e Souza; Maria Elisa Calcagnotto; Maria M. Campos; Ana Maria Oliveira Battastini; Diogo Losch de Oliveira

Pentylenetetrazole (PTZ) is a common convulsant agent used in animal models to investigate the mechanisms of seizures. Although adult zebrafish have been recently used to study epileptic seizures, a thorough characterization of the PTZ-induced seizures in this animal model is missing. The goal of this study was to perform a detailed temporal behavior profile characterization of PTZ-induced seizure in adult zebrafish. The behavioral profile during 20 min of PTZ immersion (5, 7.5, 10, and 15 mM) was characterized by stages defined as scores: (0) short swim, (1) increased swimming activity and high frequency of opercular movement, (2) erratic movements, (3) circular movements, (4) clonic seizure-like behavior, (5) fall to the bottom of the tank and tonic seizure-like behavior, (6) death. Animals exposed to distinct PTZ concentrations presented different seizure profiles, intensities and latencies to reach all scores. Only animals immersed into 15 mM PTZ showed an increased time to return to the normal behavior (score 0), after exposure. Total mortality rate at 10 and 15 mM were 33% and 50%, respectively. Considering all behavioral parameters, 5, 7.5, 10, and 15 mM PTZ, induced seizures with low, intermediate, and high severity, respectively. Pretreatment with diazepam (DZP) significantly attenuated seizure severity. Finally, the brain PTZ levels in adult zebrafish immersed into the chemoconvulsant solution at 5 and 10 mM were comparable to those described for the rodent model, with a peak after a 20-min of exposure. The PTZ brain levels observed after 2.5-min PTZ exposure and after 60-min removal from exposure were similar. Altogether, our results showed a detailed temporal behavioral characterization of a PTZ epileptic seizure model in adult zebrafish. These behavioral analyses and the simple method for PTZ quantification could be considered as important tools for future investigations and translational research.


Neurochemistry International | 2008

Ethanol and acetaldehyde alter NTPDase and 5'-nucleotidase from zebrafish brain membranes.

Eduardo Pacheco Rico; Denis Broock Rosemberg; Mario Roberto Senger; Marcelo de Bem Arizi; Renato Dutra Dias; André Arigony Souto; Maurício Reis Bogo; Carla Denise Bonan

Alcohol abuse is an acute health problem throughout the world and alcohol consumption is linked to the occurrence of several pathological conditions. Here we tested the acute effects of ethanol on NTPDases (nucleoside triphosphate diphosphohydrolases) and 5-nucleotidase in zebrafish (Danio rerio) brain membranes. The results have shown a decrease on ATP (36.3 and 18.4%) and ADP (30 and 20%) hydrolysis after 0.5 and 1% (v/v) ethanol exposure during 60 min, respectively. In contrast, no changes on 5-nucleotidase activity were observed in zebrafish brain membranes. Ethanol in vitro did not alter ATP and ADP hydrolysis, but AMP hydrolysis was inhibited at 0.5, and 1% (23 and 28%, respectively). Acetaldehyde in vitro, in the range 0.5-1%, inhibited ATP (40-85%) and ADP (28-65%) hydrolysis, whereas AMP hydrolysis was reduced (52, 58 and 64%) at 0.25, 0.5 and 1%, respectively. Acetate in vitro did not alter these enzyme activities. Semi-quantitative expression analysis of NTPDase and 5-nucleotidase were performed. Ethanol treatment reduced NTPDase1 and three isoforms of NTPDase2 mRNA levels. These findings demonstrate that acute ethanol intoxication may influence the enzyme pathway involved in the degradation of ATP to adenosine, which could affect the responses mediated by adenine nucleotides and nucleosides in zebrafish central nervous system.


Brain Research Bulletin | 2010

Expression and functional analysis of Na+-dependent glutamate transporters from zebrafish brain

Eduardo Pacheco Rico; Diogo Losch de Oliveira; Denis Broock Rosemberg; Ben Hur Marins Mussulini; Carla Denise Bonan; Renato Dutra Dias; Susana Tchernin Wofchuk; Diogo O. Souza; Maurício Reis Bogo

High-affinity excitatory amino acid transporters (EAATs) regulate extracellular glutamate levels. Zebrafish (Danio rerio) provides an excellent model to study the function of different neurotransmitter systems. Although the identification of the EAAT family is well established in the mammalian central nervous system (CNS), EAAT-related genes and their expression profile in zebrafish have not yet been reported. Here we identify and describe the expression profile of EAATs-related genes and functional properties of glutamate uptake in three major brain structures from zebrafish (telencephalon, optic tectum and cerebellum). Searches on zebrafish genome databases and a phylogenetic analysis confirmed the presence of several EAAT-related genes (EAAT2, EAAT3, three EAAT1 paralogs and two EAAT5 sequences). All sequences identified were expressed in the structures analyzed. EAAT2 and EAAT3 were the most prominent glutamate transporters expressed in all brain areas. A uniform expression was observed for EAAT1A, whereas higher EAAT1B transcript levels were detected in telencephalon. Lower amounts of EAAT1C transcripts were observed in cerebellum when compared to other structures. No EAAT4-related sequence was found in the zebrafish genome. The EAAT5A expression was similar to EAAT5B in the telencephalon, while EAAT5B was less expressed than EAAT5A in optic tectum and cerebellum. Moreover, the glutamate uptake was significantly higher in optic tectum, which indicates functional differences within zebrafish brain structures. Altogether, the study of glutamate uptake in zebrafish could be important to evaluate the modulation of glutamatergic signaling through pharmacological and toxicological studies.


Toxicology in Vitro | 2010

In vitro effects of antiepileptic drugs on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain

Anna Maria Siebel; Eduardo Pacheco Rico; Katiucia Marques Capiotti; Angelo L. Piato; C.T. Cusinato; T.M.A. Franco; Maurício Reis Bogo; Carla Denise Bonan

Carbamazepine (CBZ), phenytoin (PHT), and gabapentine (GBP) are classical antiepileptic drugs (AEDs) that act through a variety of mechanisms. We have tested the in vitro effects of CBZ, PHT, and GBP at different concentrations on ectonucleotidase and acetylcholinesterase activities in zebrafish brain. CBZ inhibited ATP hydrolysis at 1000 microM (32%) whereas acetylcholine hydrolysis decreased at 500 microM (25.2%) and 1000 microM (38.7%). PHT increased AMP hydrolysis both at 500 microM (65%) and 1000 microM (64.8%). GBP did not promote any significant changes on ectonucleotidase and acetylcholinesterase activities. These results have shown that CBZ can reduce NTPDase (nucleoside triphosphate diphosphohydrolase) and PHT enhance ecto 5-nucleotidase activities. Therefore, it is possible to suggest that the AEDs induced-effects on ectonucleotidases are related to enzyme anchorage form. Our findings have also shown that high CBZ concentrations inhibit acetylcholinesterase activity, which can induce an increase of acetylcholine levels. Taken together, these results showed a complex interaction among AEDs, purinergic, and cholinergic systems, providing a better understanding of the AEDs pharmacodynamics.


Comparative Biochemistry and Physiology B | 2008

Kinetic characterization of adenosine deaminase activity in zebrafish (Danio rerio) brain

Denis Broock Rosemberg; Eduardo Pacheco Rico; Mario Roberto Senger; Renato Dutra Dias; Maurício Reis Bogo; Carla Denise Bonan; Diogo O. Souza

Adenosine deaminase (ADA; EC 3.5.4.4) activity is responsible for cleaving adenosine to inosine. In this study we described the biochemical properties of adenosine deamination in soluble and membrane fractions of zebrafish (Danio rerio) brain. The optimum pH for ADA activity was in the range of 6.0-7.0 in soluble fraction and reached 5.0 in brain membranes. A decrease of 31.3% on adenosine deamination in membranes was observed in the presence of 5 mM Zn(2+), which was prevented by 5 mM EDTA. The apparent K(m) values for adenosine deamination were 0.22+/-0.03 and 0.19+/-0.04 mM for soluble and membrane fractions, respectively. The apparent V(max) value for soluble ADA activity was 12.3+/-0.73 nmol NH(3) min(-1) mg(-1) of protein whereas V(max) value in brain membranes was 17.5+/-0.51 nmol NH(3) min(-1) mg(-1) of protein. Adenosine and 2-deoxyadenosine were deaminated in higher rates when compared to guanine nucleosides in both fractions. Furthermore, a significant inhibition on adenosine deamination in both soluble and membrane fractions was observed in the presence of 0.1 mM of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The presence of ADA activity in zebrafish brain may be important to regulate the adenosine/inosine levels in the CNS of this species.

Collaboration


Dive into the Eduardo Pacheco Rico's collaboration.

Top Co-Authors

Avatar

Denis Broock Rosemberg

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Maurício Reis Bogo

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carla Denise Bonan

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Renato D. Dias

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diogo Losch de Oliveira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Diogo O. Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Marcelo de Bem Arizi

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Renato Dutra Dias

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Diogo Onofre Gomes de Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge