Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo Palermo is active.

Publication


Featured researches published by Eduardo Palermo.


Sensors | 2016

Gait Partitioning Methods: A Systematic Review

Juri Taborri; Eduardo Palermo; Stefano Rossi; Paolo Cappa

In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.


Sensors | 2014

A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network

Juri Taborri; Stefano Rossi; Eduardo Palermo; Fabrizio Patanè; Paolo Cappa

In this work, we decided to apply a hierarchical weighted decision, proposed and used in other research fields, for the recognition of gait phases. The developed and validated novel distributed classifier is based on hierarchical weighted decision from outputs of scalar Hidden Markov Models (HMM) applied to angular velocities of foot, shank, and thigh. The angular velocities of ten healthy subjects were acquired via three uni-axial gyroscopes embedded in inertial measurement units (IMUs) during one walking task, repeated three times, on a treadmill. After validating the novel distributed classifier and scalar and vectorial classifiers-already proposed in the literature, with a cross-validation, classifiers were compared for sensitivity, specificity, and computational load for all combinations of the three targeted anatomical segments. Moreover, the performance of the novel distributed classifier in the estimation of gait variability in terms of mean time and coefficient of variation was evaluated. The highest values of specificity and sensitivity (>0.98) for the three classifiers examined here were obtained when the angular velocity of the foot was processed. Distributed and vectorial classifiers reached acceptable values (>0.95) when the angular velocity of shank and thigh were analyzed. Distributed and scalar classifiers showed values of computational load about 100 times lower than the one obtained with the vectorial classifier. In addition, distributed classifiers showed an excellent reliability for the evaluation of mean time and a good/excellent reliability for the coefficient of variation. In conclusion, due to the better performance and the small value of computational load, the here proposed novel distributed classifier can be implemented in the real-time application of gait phases recognition, such as to evaluate gait variability in patients or to control active orthoses for the recovery of mobility of lower limb joints.


PLOS ONE | 2013

Gait detection in children with and without hemiplegia using single-axis wearable gyroscopes.

Nicole Abaid; Paolo Cappa; Eduardo Palermo; M. Petrarca; Maurizio Porfiri

In this work, we develop a novel gait phase detection algorithm based on a hidden Markov model, which uses data from foot-mounted single-axis gyroscopes as input. We explore whether the proposed gait detection algorithm can generate equivalent results as a reference signal provided by force sensitive resistors (FSRs) for typically developing children (TD) and children with hemiplegia (HC). We find that the algorithm faithfully reproduces reference results in terms of high values of sensitivity and specificity with respect to FSR signals. In addition, the algorithm distinguishes between TD and HC and is able to assess the level of gait ability in patients. Finally, we show that the algorithm can be adapted to enable real-time processing with high accuracy. Due to the small, inexpensive nature of gyroscopes utilized in this study and the ease of implementation of the developed algorithm, this work finds application in the on-going development of active orthoses designed for therapy and locomotion in children with gait pathologies.


Sensors | 2015

Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy

Juri Taborri; Emilia Scalona; Eduardo Palermo; Stefano Rossi; Paolo Cappa

Gait-phase recognition is a necessary functionality to drive robotic rehabilitation devices for lower limbs. Hidden Markov Models (HMMs) represent a viable solution, but they need subject-specific training, making data processing very time-consuming. Here, we validated an inter-subject procedure to avoid the intra-subject one in two, four and six gait-phase models in pediatric subjects. The inter-subject procedure consists in the identification of a standardized parameter set to adapt the model to measurements. We tested the inter-subject procedure both on scalar and distributed classifiers. Ten healthy children and ten hemiplegic children, each equipped with two Inertial Measurement Units placed on shank and foot, were recruited. The sagittal component of angular velocity was recorded by gyroscopes while subjects performed four walking trials on a treadmill. The goodness of classifiers was evaluated with the Receiver Operating Characteristic. The results provided a goodness from good to optimum for all examined classifiers (0 < G < 0.6), with the best performance for the distributed classifier in two-phase recognition (G = 0.02). Differences were found among gait partitioning models, while no differences were found between training procedures with the exception of the shank classifier. Our results raise the possibility of avoiding subject-specific training in HMM for gait-phase recognition and its implementation to control exoskeletons for the pediatric population.


PLOS ONE | 2016

Disability and fatigue can be objectively measured in multiple sclerosis

Caterina Motta; Eduardo Palermo; Valeria Studer; Marco Germanotta; Giorgio Germani; Diego Centonze; Paolo Cappa; Silvia Rossi; Stefano Rossi

Background The available clinical outcome measures of disability in multiple sclerosis are not adequately responsive or sensitive. Objective To investigate the feasibility of inertial sensor-based gait analysis in multiple sclerosis. Methods A cross-sectional study of 80 multiple sclerosis patients and 50 healthy controls was performed. Lower-limb kinematics was evaluated by using a commercially available magnetic inertial measurement unit system. Mean and standard deviation of range of motion (mROM, sROM) for each joint of lower limbs were calculated in one minute walking test. A motor performance index (E) defined as the sum of sROMs was proposed. Results We established two novel observer-independent measures of disability. Hip mROM was extremely sensitive in measuring lower limb motor impairment, being correlated with muscle strength and also altered in patients without clinically detectable disability. On the other hand, E index discriminated patients according to disability, being altered only in patients with moderate and severe disability, regardless of walking speed. It was strongly correlated with fatigue and patient-perceived health status. Conclusions Inertial sensor-based gait analysis is feasible and can detect clinical and subclinical disability in multiple sclerosis.


ieee international symposium on medical measurements and applications | 2015

Real-time gait detection based on Hidden Markov Model: Is it possible to avoid training procedure?

Juri Taborri; Emilia Scalona; Stefano Rossi; Eduardo Palermo; Fabrizio Patanè; Paolo Cappa

In this paper we present and validate a methodology to avoid the training procedure of a classifier based on an Hidden Markov Model (HMM) for a real-time gait recognition of two or four phases, implemented to control pediatric active orthoses of lower limb. The new methodology consists in the identification of a set of standardized parameters, obtained by a data set of angular velocities of healthy subjects age-matched. Sagittal angular velocities of lower limbs of ten typically developed children (TD) and ten children with hemiplegia (HC) were acquired by means of the tri-axial gyroscope embedded into Magnetic Inertial Measurement Units (MIMU). The actual sequence of gait phases was captured through a set of four foot switches. The experimental protocol consists in two walking tasks on a treadmill set at 1.0 and 1.5 km/h. We used the Goodness (G) as parameter, computed from Receiver Operating Characteristic (ROC) space, to compare the results obtained by the new methodology with the ones obtained by the subject-specific training of HMM via the Baum-Welch Algorithm. Paired-sample t-tests have shown no significant statistically differences between the two procedures when the gait phase detection was performed with the gyroscopes placed on the foot. Conversely, significant differences were found in data gathered by means of gyroscopes placed on shank. Actually, data relative to both groups presented G values in the range of good/optimum classifier (i.e. G ≤ 0.3), with better performance for the two-phase classifier model. In conclusion, the novel methodology here proposed guarantees the possibility to omit the off-line subject-specific training procedure for gait phase detection and it can be easily implemented in the control algorithm of active orthoses.


PLOS ONE | 2017

A natural user interface to integrate citizen science and physical exercise

Eduardo Palermo; Jeffrey Laut; Oded Nov; Paolo Cappa; Maurizio Porfiri

Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.


Frontiers in Human Neuroscience | 2017

Spasticity Measurement Based on Tonic Stretch Reflex Threshold in Children with Cerebral Palsy Using the PediAnklebot

Marco Germanotta; Juri Taborri; Stefano Rossi; F. Frascarelli; Eduardo Palermo; Paolo Cappa; Enrico Castelli; M. Petrarca

Nowadays, objective measures are becoming prominent in spasticity assessment, to overcome limitations of clinical scales. Among others, Tonic Stretch Reflex Threshold (TSRT) showed promising results. Previous studies demonstrated the validity and reliability of TSRT in spasticity assessment at elbow and ankle joints in adults. Purposes of the present study were to assess: (i) the feasibility of measuring TSRT to evaluate spasticity at the ankle joint in children with Cerebral Palsy (CP), and (ii) the correlation between objective measures and clinical scores. A mechatronic device, the pediAnklebot, was used to impose 50 passive stretches to the ankle of 10 children with CP and 3 healthy children, to elicit muscles response at 5 different velocities. Surface electromyography, angles, and angular velocities were recorded to compute dynamic stretch reflex threshold; TSRT was computed with a linear regression through angles and angular velocities. TSRTs for the most affected side of children with CP resulted into the biomechanical range (95.7 ± 12.9° and 86.7 ± 17.4° for Medial and Lateral Gastrocnemius, and 75.9 ± 12.5° for Tibialis Anterior). In three patients, the stretch reflex was not elicited in the less affected side. TSRTs were outside the biomechanical range in healthy children. However, no correlation was found between clinical scores and TSRT values. Here, we demonstrated the capability of TSRT to discriminate between spastic and non-spastic muscles, while no significant outcomes were found for the dorsiflexor muscle.


Sensors | 2018

Measuring Gait Quality in Parkinson’s Disease through Real-Time Gait Phase Recognition

Ilaria Mileti; Marco Germanotta; Enrica Di Sipio; Isabella Imbimbo; Alessandra Pacilli; Carmen Erra; Martina Petracca; Stefano Rossi; Zaccaria Del Prete; Anna Rita Bentivoglio; Luca Padua; Eduardo Palermo

Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson’s Disease (PD). In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G) was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI) was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25) for three tested methods and good performance (0.25 < G < 0.70) for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors.


Journal of Sensors | 2017

Validation of Ankle Strength Measurements by Means of a Hand-Held Dynamometer in Adult Healthy Subjects

Andrea Ancillao; Eduardo Palermo; Stefano Rossi

Uniaxial Hand-Held Dynamometer (HHD) is a low-cost device widely adopted in clinical practice to measure muscle force. HHD measurements depend on operator’s ability and joint movements. The aim of the work is to validate the use of a commercial HHD in both dorsiflexion and plantarflexion ankle strength measurements quantifying the effects of HHD misplacements and unwanted foot’s movements on the measurements. We used an optoelectronic system and a multicomponent load cell to quantify the sources of error in the manual assessment of the ankle strength due to both the operator’s ability to hold still the HHD and the transversal components of the exerted force that are usually neglected in clinical routine. Results showed that foot’s movements and angular misplacements of HHD on sagittal and horizontal planes were relevant sources of inaccuracy on the strength assessment. Moreover, ankle dorsiflexion and plantarflexion force measurements presented an inaccuracy less than 2% and higher than 10%, respectively. In conclusion, the manual use of a uniaxial HHD is not recommended for the assessment of ankle plantarflexion strength; on the contrary, it can be allowed asking the operator to pay strong attention to the HHD positioning in ankle dorsiflexion strength measurements.

Collaboration


Dive into the Eduardo Palermo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Cappa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Juri Taborri

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Zaccaria Del Prete

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Patanè

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Alessandra Pacilli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Emilia Scalona

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Ilaria Mileti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Germanotta

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

M. Petrarca

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge