Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo R. Ropelle is active.

Publication


Featured researches published by Eduardo R. Ropelle.


PLOS Biology | 2011

Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice

Andrea M. Caricilli; Paty K. Picardi; Lélia L. de Abreu; Mirian Ueno; Patrícia O. Prada; Eduardo R. Ropelle; Sandro M. Hirabara; Ângela Castoldi; Pedro Vieira; Niels Olsen Saraiva Camara; Rui Curi; José B.C. Carvalheira; Mario J.A. Saad

A genetic and pharmacological approach reveals novel insights into how changes in gut microbiota can subvert genetically predetermined phenotypes from lean to obese.


Science | 2016

NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice

Hongbo Zhang; Dongryeol Ryu; Yibo Wu; Karim Gariani; Xu Wang; Peiling Luan; Davide D'Amico; Eduardo R. Ropelle; Matthias P. Lutolf; Ruedi Aebersold; Kristina Schoonjans; Keir J. Menzies; Johan Auwerx

A dietary supplement protects aging muscle The oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and its supplementation can lead to increased longevity. Zhang et al. found that feeding the NAD+ precursor nicotinamide riboside (NR) to aging mice protected them from muscle degeneration (see the Perspective by Guarente). NR treatment enhanced muscle function and also protected mice from the loss of muscle stem cells. The treatment was similarly protective of neural and melanocyte stem cells, which may have contributed to the extended life span of the NR-treated animals. Science, this issue p. 1436; see also p. 1396 A dietary supplement protects muscle stem cells and increases mouse longevity. Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD+ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD+ may reprogram dysfunctional SCs and improve life span in mammals.


PLOS ONE | 2012

Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity.

Dennys E. Cintra; Eduardo R. Ropelle; Juliana C. Moraes; José Rodrigo Pauli; Joseane Morari; Cláudio T. De Souza; Renato Grimaldi; Marcela Stahl; José B.C. Carvalheira; Mario J.A. Saad; Lício A. Velloso

Background In experimental models, hypothalamic inflammation is an early and determining factor in the installation and progression of obesity. Pharmacological and gene-based approaches have proven efficient in restraining inflammation and correcting the obese phenotypes. However, the role of nutrients in the modulation of hypothalamic inflammation is unknown. Methodology/Principal Findings Here we show that, in a mouse model of diet-induced obesity, partial substitution of the fatty acid component of the diet by flax seed oil (rich in C18:3) or olive oil (rich in C18:1) corrects hypothalamic inflammation, hypothalamic and whole body insulin resistance, and body adiposity. In addition, upon icv injection in obese rats, both ω3 and ω9 pure fatty acids reduce spontaneous food intake and body mass gain. These effects are accompanied by the reversal of functional and molecular hypothalamic resistance to leptin/insulin and increased POMC and CART expressions. In addition, both, ω3 and ω9 fatty acids inhibit the AMPK/ACC pathway and increase CPT1 and SCD1 expression in the hypothalamus. Finally, acute hypothalamic injection of ω3 and ω9 fatty acids activate signal transduction through the recently identified GPR120 unsaturated fatty acid receptor. Conclusions/Significance Unsaturated fatty acids can act either as nutrients or directly in the hypothalamus, reverting diet-induced inflammation and reducing body adiposity. These data show that, in addition to pharmacological and genetic approaches, nutrients can also be attractive candidates for controlling hypothalamic inflammation in obesity.


PLOS Biology | 2010

IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKKβ and ER Stress Inhibition

Eduardo R. Ropelle; Marcelo B.S. Flores; Dennys E. Cintra; Guilherme Z. Rocha; José Rodrigo Pauli; Joseane Morari; Cláudio T. De Souza; Juliana C. Moraes; Patrícia O. Prada; Dioze Guadagnini; Rodrigo Miguel Marin; Alexandre G. Oliveira; Taize M. Augusto; Hernandes F. Carvalho; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira

Physical activity confers beneficial metabolic effects by inducing anti-inflammatory activity in the hypothalamus region of the brain in rodents, resulting in a reorganization of the set point of nutritional balance and reduced insulin and leptin resistance.


Diabetes | 2008

A Central Role for Neuronal AMP-Activated Protein Kinase (AMPK) and Mammalian Target of Rapamycin (mTOR) in High-Protein Diet–Induced Weight Loss

Eduardo R. Ropelle; José Rodrigo Pauli; Maria Fernanda A. Fernandes; Silvana A. Rocco; Rodrigo Miguel Marin; Joseane Morari; Kellen K. Souza; Marília M. Dias; Maria Cristina Cintra Gomes-Marcondes; José Antonio Rocha Gontijo; Kleber G. Franchini; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira

OBJECTIVE—A high-protein diet (HPD) is known to promote the reduction of body fat, but the mechanisms underlying this change are unclear. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) function as majors regulators of cellular metabolism that respond to changes in energy status, and recent data demonstrated that they also play a critical role in systemic energy balance. Here, we sought to determine whether the response of the AMPK and mTOR pathways could contribute to the molecular effects of an HPD. RESEARCH DESIGN AND METHODS—Western blotting, confocal microscopy, chromatography, light microscopy, and RT-PCR assays were combined to explore the anorexigenic effects of an HPD. RESULTS—An HPD reduced food intake and induced weight loss in both normal rats and ob/ob mice. The intracerebroventricular administration of leucine reduced food intake, and the magnitude of weight loss and reduction of food intake in a leucine-supplemented diet are similar to that achieved by HPD in normal rats and in ob/ob mice, suggesting that leucine is a major component of the effects of an HPD. Leucine and HPD decrease AMPK and increase mTOR activity in the hypothalamus, leading to inhibition of neuropeptide Y and stimulation of pro-opiomelanocortin expression. Consistent with a cross-regulation between AMPK and mTOR to control food intake, our data show that the activation of these enzymes occurs in the same specific neuronal subtypes. CONCLUSIONS—These findings provide support for the hypothesis that AMPK and mTOR interact in the hypothalamus to regulate feeding during HPD in a leucine-dependent manner.


Clinical Cancer Research | 2011

Metformin Amplifies Chemotherapy-Induced AMPK Activation and Antitumoral Growth

Guilherme Z. Rocha; Marília M. Dias; Eduardo R. Ropelle; Felipe Osório-Costa; Franco A. Rossato; Anibal E. Vercesi; Mario J.A. Saad; José B.C. Carvalheira

Purpose: Metformin is a widely used antidiabetic drug whose anticancer effects, mediated by the activation of AMP-activated protein kinase (AMPK) and reduction of mTOR signaling, have become noteworthy. Chemotherapy produces genotoxic stress and induces p53 activity, which can cross-talk with AMPK/mTOR pathway. Herein, we investigate whether the combination of metformin and paclitaxel has an effect in cancer cell lines. Experimental Design: Human tumors were xenografted into severe combined immunodeficient (SCID) mice and the cancer cell lines were treated with only paclitaxel or only metformin, or a combination of both drugs. Western blotting, flow cytometry, and immunohistochemistry were then used to characterize the effects of the different treatments. Results: The results presented herein show that the addition of metformin to paclitaxel leads to quantitative potentialization of molecular signaling through AMPK and a subsequent potent inhibition of the mTOR signaling pathway. Treatment with metformin and paclitaxel resulted in an increase in the number of cells arrested in the G2–M phase of the cell cycle, and decreased the tumor growth and increased apoptosis in tumor-bearing mice, when compared with individual drug treatments. Conclusion: We have provided evidence for a convergence of metformin and paclitaxel induced signaling at the level of AMPK. This mechanism shows how different drugs may cooperate to augment antigrowth signals, and suggests that target activation of AMPK by metformin may be a compelling ally in cancer treatment. Clin Cancer Res; 17(12); 3993–4005. ©2011 AACR.


Metabolism-clinical and Experimental | 2011

The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus

Maria Luiza Mendonça Pereira Jorge; Vanessa Neves de Oliveira; Nathália Maria Resende; Lara Ferreira Paraiso; Antonio Ramos Calixto; Angélica Lemos Debs Diniz; Elmiro Santos Resende; Eduardo R. Ropelle; José B.C. Carvalheira; Foued Salmen Espindola; Paulo Tannus Jorge; Bruno Geloneze

The purpose of this study was to compare the effects of 3 different modalities of exercise on metabolic control, insulin resistance, inflammatory markers, adipocytokines, and tissue expression of insulin receptor substrate (IRS)-1 after 12 weeks of training among patients with type 2 diabetes mellitus. Forty-eight patients with type 2 diabetes mellitus were randomly assigned to 4 groups of training (3 times a week, 60 minutes per session): aerobic group (n = 12), resistance group (n = 12), combined (aerobic and resistance) group (n = 12), and control group (n = 12). Fasting and postprandial blood glucose, glycated hemoglobin, lipid profile, insulin resistance index (homeostasis model assessment of insulin resistance), adipocytokines (adiponectin, visfatin, and resistin), tumor necrosis factor, interleukin, and high-sensitivity C-reactive protein (hs-CRP) were measured at baseline and at the end of the study. Patients also underwent a muscle microbiopsy before and after training to quantify IRS-1 expression. All 4 groups displayed decreases in blood pressure, fasting plasma glucose, postprandial plasma glucose, lipid profile, and hs-CRP (P < .05); and there was no difference across the groups. After training, the IRS-1 expression increased by 65% in the resistance group (P < .05) and by 90% in the combined group (P < .01). Exercise training favorably affects glycemic parameters, lipid profile, blood pressure, and hs-CRP. In addition, resistance and combined training can increase IRS-1 expression.


The Journal of Physiology | 2006

Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation

Eduardo R. Ropelle; José Rodrigo Pauli; Patrícia O. Prada; Cláudio T. De Souza; Paty K. Picardi; Marcel C. Faria; Dennys E. Cintra; Maria Fernanda A. Fernandes; Marcelo B.S. Flores; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira

Lifestyle interventions including exercise programmes are cornerstones in the prevention of obesity‐related diabetes. In this study, we demonstrate that a single bout of exercise inhibits high‐fat diet‐induced insulin resistance. Diet‐induced obesity (DIO) increased the expression and activity of the protein tyrosine phosphatase 1B (PTP1B) and attenuated insulin signalling in gastrocnemius muscle of rats, a phenomenon which was reversed by a single session of exercise. In addition, DIO was observed to lead to serine phosphorylation of insulin receptor substrate 1 (IRS‐1), which was also reversed by exercise in muscle in parallel with a reduction in c‐Jun N‐terminal kinase (JNK) activity. Thus, acute exercise increased the insulin sensitivity during high‐fat feeding in obese rats. Overall, these results provide new insights into the mechanism by which exercise restores insulin sensitivity.


Diabetes | 2006

Exercise Improves Insulin and Leptin Sensitivity in Hypothalamus of Wistar Rats

Marcelo B.S. Flores; Maria Fernanda A. Fernandes; Eduardo R. Ropelle; Marcel C. Faria; Mirian Ueno; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira

Prolonged exercise of medium to high intensity is known to promote a substantial effect on the energy balance of rats. In male rats, moderately to severely intense programs lead to a reduction in food intake. However, the exact causes for the appetite-suppressive effects of exercise are not known. Here, we show that intracerebroventricular insulin or leptin infusion reduced food intake in exercised rats to a greater extent than that observed in control animals. Exercise was associated with a markedly increased phosphorylation/activity of several proteins involved in leptin and insulin signal transduction in the hypothalamus. The regulatory role of interleukin (IL)-6 in mediating the increase in leptin and insulin sensitivity in hypothalamus was also investigated. Treatment with insulin or leptin markedly reduced food intake in exercised rats that were pretreated with vehicle, although no increase in sensitivity to leptin- and insulin-induced anorexia after pretreatment with anti–IL-6 antibody was detected. The current study provides direct measurements of leptin and insulin signaling in the hypothalamus and documents increased sensitivity to these hormones in the hypothalamus of exercised rats in an IL-6–dependent manner. These findings provide support for the hypothesis that the appetite-suppressive actions of exercise may be mediated by the hypothalamus.


Endocrinology | 2011

Low-Grade Hypothalamic Inflammation Leads to Defective Thermogenesis, Insulin Resistance, and Impaired Insulin Secretion

Ana Paula Arruda; Marciane Milanski; Andressa Coope; Adriana Souza Torsoni; Eduardo R. Ropelle; Denise P. Carvalho; José B.C. Carvalheira; Lício A. Velloso

Hypothalamic inflammation is present in animal models of obesity, and the intracerebroventricular injection of TNFα can reproduce a number of features of the hypothalamus of obese animals. Because obesity is a risk factor for type 2 diabetes (DM2) we hypothesized that, by inducing hypothalamic inflammation, we could reproduce some clinical features of DM2. Lean Wistar rats and TNF receptor 1-knockout mice were employed to determine the effects of hypothalamic actions of TNFα on thermogenesis and metabolic parameters. Signal transduction and protein expression were evaluated by immunoblot and real-time PCR. Thermogenesis was evaluated in living rats, and respirometry was determined in isolated muscle fiber. In Wistar rats, hypothalamic TNFα blunts the anorexigenic effect of leptin, which is accompanied by reduced leptin signaling and increased expression of suppressor of cytokine signaling 3. In addition, hypothalamic TNFα reduces O(2) consumption and the expression of thermogenic proteins in brown adipose tissue and skeletal muscle. Furthermore, hypothalamic inflammation increases base-line plasma insulin and insulin secretion by isolated pancreatic islets, which is accompanied by an impaired insulin signal transduction in liver and skeletal muscle. Hypothalamic inflammation induced by stearic acid also reduces O(2) consumption and blunts peripheral insulin signal transduction. The use of intracerebroventricular infliximab restores O(2) consumption in obese rats, whereas TNF receptor 1-knockout mice are protected from diet-induced reduced thermogenesis and defective insulin signal transduction. Thus, low-grade inflammation of the hypothalamus is sufficient to induce changes in a number of parameters commonly impaired in obesity and DM2, and TNFα is an important mediator of this process.

Collaboration


Dive into the Eduardo R. Ropelle's collaboration.

Top Co-Authors

Avatar

José Rodrigo Pauli

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Dennys E. Cintra

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leandro Pereira de Moura

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Cláudio T. De Souza

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Lício A. Velloso

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Mario J.A. Saad

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Vitor Rosetto Muñoz

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Rafael Calais Gaspar

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge