Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo Rigon Zimmer is active.

Publication


Featured researches published by Eduardo Rigon Zimmer.


Hippocampus | 2011

Exercise Increases Insulin Signaling in the Hippocampus: Physiological Effects and Pharmacological Impact of Intracerebroventricular Insulin Administration in Mice

Alexandre Pastoris Müller; Jussânia Gnoatto; Júlia Dubois Moreira; Eduardo Rigon Zimmer; Clarissa Haas; Francisco Lulhier; Marcos Luiz Santos Perry; Diogo O. Souza; Ignacio Torres-Aleman; Luis Valmor Cruz Portela

Increasing evidence indicates that physical exercise induces adaptations at the cellular, molecular, and systemic levels that positively affect the brain. Insulin plays important functional roles within the brain that are mediated by insulin‐receptor (IR) signaling. In the hippocampus, insulin improves synaptic plasticity, memory formation, and learning via direct modulation of GABAergic and glutamatergic receptors. Separately, physical exercise and central insulin administration exert relevant roles in cognitive function. We here use CF1 mice to investigate (i) the effects of voluntary exercise on hippocampal insulin signaling and memory performance and (ii) whether central insulin administration alters the effects of exercise on hippocampal insulin signaling and memory performance. Adult mice performed 30 days of voluntary exercise on running wheel and afterward both, sedentary and exercised groups, received intracerebroventricular (icv) injection of saline or insulin (0.5–5 mU). Memory performance was assessed using the inhibitory avoidance and water maze tasks. Hippocampal tissue was measured for [U‐14C] glucose oxidation and the immunocontent of insulin receptor/signaling (IR, pTyr, pAktser473). Additionally, the phosphorylation of the glutamate NMDA receptor NR2B subunit and the capacity of glutamate uptake were measured, and immunohistochemistry was used to determine glial reactivity. Exercise significantly increased insulin peripheral sensitivity, spatial learning, and hippocampal IR/pTyrIR/pAktser473 immunocontent. Glucose oxidation, glutamate uptake, and astrocyte number also increased relative to the sedentary group. In both memory tasks, 5 mU icv insulin produced amnesia but only in exercised animals. This amnesia was associated a rapid (15 min) and persistent (24 h) increase in hippocampal pNR2B immunocontent that paralleled the increase in glial reactivity. In conclusion, physical exercise thus increased hippocampal insulin signaling and improved water maze performance. Overstimulation of insulin signaling in exercised animals, however, via icv administration impaired behavioral performance. This effect was likely the result of aberrant phosphorylation of the NR2B subunit.


Journal of Neuroinflammation | 2014

Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging

Eduardo Rigon Zimmer; Antoine Leuzy; Andrea Lessa Benedet; John C.S. Breitner; Serge Gauthier; Pedro Rosa-Neto

Alzheimer’s disease (AD) has been reconceptualized as a dynamic pathophysiological process, where the accumulation of amyloid-beta (Aβ) is thought to trigger a cascade of neurodegenerative events resulting in cognitive impairment and, eventually, dementia. In addition to Aβ pathology, various lines of research have implicated neuroinflammation as an important participant in AD pathophysiology. Currently, neuroinflammation can be measured in vivo using positron emission tomography (PET) with ligands targeting diverse biological processes such as microglial activation, reactive astrocytes and phospholipase A2 activity. In terms of therapeutic strategies, despite a strong rationale and epidemiological studies suggesting that the use of non-steroidal anti-inflammatory drugs (NSAIDs) may reduce the prevalence of AD, clinical trials conducted to date have proven inconclusive. In this respect, it has been hypothesized that NSAIDs may only prove protective if administered early on in the disease course, prior to the accumulation of significant AD pathology. In order to test various hypotheses pertaining to the exact role of neuroinflammation in AD, studies in asymptomatic carriers of mutations deterministic for early-onset familial AD may prove of use. In this respect, PET ligands for neuroinflammation may act as surrogate markers of disease progression, allowing for the development of more integrative models of AD, as well as for the measuring of target engagement in the context of clinical trials using NSAIDs. In this review, we address the biological basis of neuroinflammatory changes in AD, underscore therapeutic strategies using anti-inflammatory compounds, and shed light on the possibility of tracking neuroinflammation in vivo using PET imaging ligands.


Molecular and Cellular Neuroscience | 2012

Reduced brain insulin-like growth factor I function during aging

Alexandre Pastoris Müller; Ana M. Fernandez; Clarissa Haas; Eduardo Rigon Zimmer; Luis Valmor Cruz Portela; Ignacio Torres-Aleman

Peripheral insulin-like growth factor I (IGF-I) function progressively deteriorates with age. However, whereas deterioration of IGF-I function in the aged brain seems probable, it has not been directly addressed yet. Because serum IGF-I can enter into the brain through the cerebrospinal fluid (CSF), we examined this route of entrance in aged mice. To distinguish endogenous murine IGF-I from exogenously applied IGF-I, we used human IGF-I. We found that after intraperitoneous injection, CSF levels of human IGF-I were significantly higher in old mice (2 year-old) as compared to young ones (4-month-old). In spite of this increase capacity to take IGF-I from the circulation, brain and plasma IGF-I levels were reduced in naive old mice. Moreover, IGF-I signaling was deteriorated in the brain of aged animals. Basal as well as IGF-I-induced activation of the brain IGF-I receptor/Akt/GSK3 pathway was markedly reduced even though old mice have higher levels of brain IGF-I receptors. These data suggest that increases in brain IGF-I receptors and in the capacity to take up serum IGF-I result ineffective because IGF-I function is reduced and aged mice are cognitively impaired, a trait dependant on preserved serum IGF-I input to the brain.


Nature Neuroscience | 2017

[18F]FDG PET signal is driven by astroglial glutamate transport

Eduardo Rigon Zimmer; Maxime Parent; Débora G Souza; Antoine Leuzy; Clotilde Lecrux; Hyoung-Ihl Kim; Serge Gauthier; Luc Pellerin; Edith Hamel; Pedro Rosa-Neto

Contributions of glial cells to neuroenergetics have been the focus of extensive debate. Here we provide positron emission tomography evidence that activation of astrocytic glutamate transport via the excitatory amino acid transporter GLT-1 triggers widespread but graded glucose uptake in the rodent brain. Our results highlight the need for a reevaluation of the interpretation of [18F]FDG positron emission tomography data, whereby astrocytes would be recognized as contributing to the [18F]FDG signal.


Trends in Neurosciences | 2014

MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research

Eduardo Rigon Zimmer; Maxime Parent; A. Claudio Cuello; Serge Gauthier; Pedro Rosa-Neto

Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimers disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research.


Current Alzheimer Research | 2012

Pretreatment with memantine prevents Alzheimer-like alterations induced by intrahippocampal okadaic acid administration in rats.

Eduardo Rigon Zimmer; Eduardo Kalinine; Clarissa Haas; Vitor Rocco Torrez; Diogo O. Souza; Alexandre Pastoris Müller; Luis Valmor Cruz Portela

Cerebral okadaic acid (OA) administration induces Alzheimers disease (AD)-like phenotype in rats. Alterations in glutamate levels associated with hyperactivation of cyclin dependent kinase 5 (Cdk5) signaling pathway downstream Tau phosphorylation may participate in the genesis of this pathological phenotype. Here, we examined the efficacy of memantine (MN) pretreatment on reducing OA-induced AD-like phenotypes in rats. Wistar rats were given daily intraperitoneal injections of MN for 3 days and then given an intrahippocampal infusion of OA. Animals were divided into four groups: control (CO), MN, OA and MN/OA. Spontaneous locomotion and spatial memory performance were assessed by open field and Morris water maze respectively. Additionally, we measured glutamate levels in the cerebrospinal fluid (CSF) and the immunocontent of Cdk5, p35, p25 and phosphorylated Tau (pTauSer199/202) in the hippocampus. Spontaneous locomotion did not differ between groups. The OA group showed a significant decrease in spatial memory performance compared to all groups. The OA infusion also increased CSF glutamate levels and the immunocontents of Cdk5, p25 and pTauSer199/202 in the hippocampus. Conversely, pretreatment with MN prevented OA-induced spatial memory deficits and the increment of CSF glutamate level; which paralleled with normal immunocontents of Cdk5, p25 and pTau- Ser199/202 proteins. There were positive correlations between spatial memory performance and the neurochemical parameters. In summary, pretreatment with MN prevents spatial memory deficits induced by intrahippocampal OA administration in rats. The prevention of increase CSF glutamate levels, along with the reduced hippocampal phosphorylation of TauSer199/202 by Cdk5/p25 signaling pathway, are the mechanisms proposed to participate in the prophylactic effects of MN in this AD-like model.


Journal of Cerebral Blood Flow and Metabolism | 2015

Imaging in Vivo Glutamate Fluctuations with [11C]ABP688: A GLT-1 Challenge with Ceftriaxone

Eduardo Rigon Zimmer; Maxime Parent; Antoine Leuzy; Antonio Aliaga; Arturo Aliaga; Luc Moquin; Esther Schirrmacher; Jean-Paul Soucy; Ivan Skelin; Alain Gratton; Serge Gauthier; Pedro Rosa-Neto

Molecular imaging offers unprecedented opportunities for investigating dynamic changes underlying neuropsychiatric conditions. Here, we evaluated whether [11C]ABP688, a positron emission tomography (PET) ligand that binds to the allosteric site of the metabotropic glutamate receptor type 5 (mGluR5), is sensitive to glutamate fluctuations after a pharmacological challenge. For this, we used ceftriaxone (CEF) administration in rats, an activator of the GLT-1 transporter (EAAT2), which is known to decrease extracellular levels of glutamate. MicroPET [11C]ABP688 dynamic acquisitions were conducted in rats after a venous injection of either saline (baseline) or CEF 200 mg/kg (challenge). Binding potentials (BPND) were obtained using the simplified reference tissue method. Between-condition statistical parametric maps indicating brain regions showing the highest CEF effects guided placement of microdialysis probes for subsequent assessment of extracellular levels of glutamate. The CEF administration increased [11C]ABP688 BPND in the thalamic ventral anterior (VA) nucleus bilaterally. Subsequent microdialysis assessment revealed declines in extracellular glutamate concentrations in the VA. The present results support the concept that availability of mGluR5 allosteric binding sites is sensitive to extracellular concentrations of glutamate. This interesting property of mGluR5 allosteric binding sites has potential applications for assessing the role of glutamate in the pathogenesis of neuropsychiatric conditions.


Translational neurodegeneration | 2014

In vivo tracking of tau pathology using positron emission tomography (PET) molecular imaging in small animals.

Eduardo Rigon Zimmer; Antoine Leuzy; Venkat Bhat; Serge Gauthier; Pedro Rosa-Neto

Hyperphosphorylation of the tau protein leading to the formation of neurofibrillary tangles (NFTs) is a common feature in a wide range of neurodegenerative diseases known as tauopathies, which include Alzheimer’s disease (AD) and the frontotemporal dementias (FTDs). Although heavily investigated, the mechanisms underlying the pathogenesis and progression of tauopathies have yet to be fully understood. In this context, several rodent models have been developed that successfully recapitulate the behavioral and neurochemical features of tau pathology, aiming to achieve a better understanding of the link between tau and neurodegeneration. To date, behavioral and biochemical parameters assessed using these models have been conducted using a combination of memory tasks and invasive methods such as cerebrospinal fluid (CSF) sampling or post-mortem analysis. Recently, several novel positron emission tomography (PET) radiopharmaceuticals targeting tau tangles have been developed, allowing for non-invasive in vivo quantification of tau pathology. Combined with tau transgenic models and microPET, these tracers hold the promise of advancing the development of theoretical models and advancing our understanding of the natural history of AD and non-AD tauopathies. In this review, we briefly describe some of the most important insights for understanding the biological basis of tau pathology, and shed light on the opportunity for improved modeling of tau pathology using a combination of tau-radiopharmaceuticals and animal models.


European Journal of Nuclear Medicine and Molecular Imaging | 2016

Imaging β-amyloid using [(18)F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis.

Kerstin Heurling; Antoine Leuzy; Eduardo Rigon Zimmer; Mark Lubberink; Agneta Nordberg

In Alzheimer’s disease (AD), the deposition of β-amyloid (Aβ) is hypothesized to result in a series of secondary neurodegenerative processes, leading ultimately to synaptic dysfunction and neuronal loss. Since the advent of the first Aβ-specific positron emission tomography (PET) ligand, 11C-Pittsburgh compound B ([11C]PIB), several 18F ligands have been developed that circumvent the limitations of [11C]PIB tied to its short half-life. To date, three such compounds have been approved for clinical use by the US and European regulatory bodies, including [18F]AV-45 ([18F]florbetapir; Amyvid™), [18F]-BAY94-9172 ([18F]florbetaben; Neuraceq™) and [18F]3′-F-PIB ([18F]flutemetamol; Vizamyl™). The present review aims to summarize and discuss the currently available knowledge on [18F]flutemetamol PET. As the 18F analogue of [11C]PIB, [18F]flutemetamol may be of use in the differentiation of AD from related neurodegenerative disorders and may help with subject selection and measurement of target engagement in the context of clinical trials testing anti-amyloid therapeutics. We will also discuss its potential use in non-AD amyloidopathies.


Hormones and Behavior | 2014

Nandrolone-induced aggressive behavior is associated with alterations in extracellular glutamate homeostasis in mice.

Eduardo Kalinine; Eduardo Rigon Zimmer; Kamila Cagliari Zenki; Iouri Kalinine; Vanessa Kazlauckas; Clarissa Haas; Gisele Hansel; Aline Rigon Zimmer; Diogo O. Souza; Alexandre Pastoris Müller; Luis Valmor Cruz Portela

Nandrolone decanoate (ND), an anabolic androgenic steroid (AAS), induces an aggressive phenotype by mechanisms involving glutamate-induced N-methyl-d-aspartate receptor (NMDAr) hyperexcitability. The astrocytic glutamate transporters remove excessive glutamate surrounding the synapse. However, the impact of supraphysiological doses of ND on glutamate transporters activity remains elusive. We investigated whether ND-induced aggressive behavior is interconnected with GLT-1 activity, glutamate levels and abnormal NMDAr responses. Two-month-old untreated male mice (CF1, n=20) were tested for baseline aggressive behavior in the resident-intruder test. Another group of mice (n=188) was injected with ND (15mg/kg) or vehicle for 4, 11 and 19days (short-, mid- and long-term endpoints, respectively) and was evaluated in the resident-intruder test. Each endpoint was assessed for GLT-1 expression and glutamate uptake activity in the frontoparietal cortex and hippocampal tissues. Only the long-term ND endpoint significantly decreased the latency to first attack and increased the number of attacks, which was associated with decreased GLT-1 expression and glutamate uptake activity in both brain areas. These alterations may affect extracellular glutamate levels and receptor excitability. Resident males were assessed for hippocampal glutamate levels via microdialysis both prior to, and following, the introduction of intruders. Long-term ND mice displayed significant increases in the microdialysate glutamate levels only after exposure to intruders. A single intraperitoneal dose of the NMDAr antagonists, memantine or MK-801, shortly before the intruder test decreased aggressive behavior. In summary, long-term ND-induced aggressive behavior is associated with decreased extracellular glutamate clearance and NMDAr hyperexcitability, emphasizing the role of this receptor in mediating aggression mechanisms.

Collaboration


Dive into the Eduardo Rigon Zimmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diogo O. Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Luis Valmor Cruz Portela

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Pastoris Müller

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge