Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo Rocon is active.

Publication


Featured researches published by Eduardo Rocon.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2007

Design and Validation of a Rehabilitation Robotic Exoskeleton for Tremor Assessment and Suppression

Eduardo Rocon; Juan-Manuel Belda-Lois; A F Ruiz; Mario Manto; J C Moreno; J.L. Pons

Exoskeletons are mechatronic systems worn by a person in such a way that the physical interface permits a direct transfer of mechanical power and exchange of information. Upper limb robotic exoskeletons may be helpful for people with disabilities and/or limb weakness or injury. Tremor is the most common movement disorder in neurological practice. In addition to medication, rehabilitation programs, and deep brain stimulation, biomechanical loading has appeared as a potential tremor suppression alternative. This paper introduces the robotic exoskeleton called WOTAS (wearable orthosis for tremor assessment and suppression) that provides a means of testing and validating nongrounded control strategies for orthotic tremor suppression. This paper describes in detail the general concept for WOTAS, outlining the special features of the design and selection of system components. Two control strategies developed for tremor suppression with exoskeletons are described. These two strategies are based on biomechanical loading and notch Altering the tremor through the application of internal forces. Results from experiments using these two strategies on patients with tremor are summarized. Finally, results from clinical trials are presented, which indicate the feasibility of ambulatory mechanical


international conference on robotics and automation | 2005

Rehabilitation Robotics: a Wearable Exo-Skeleton for Tremor Assessment and Suppression

Eduardo Rocon; A.F. Ruiz; J.L. Pons; J.M. Belda-Lois; J.J. Sanchez-Lacuesta

There is a need for wearable powered upper limb exoskeletons able to apply forces to the upper limb for use by people with disabilities and/or limb weakness or injury. The robotic exoskeleton called WOTAS (Wearable Orthosis for Tremor Assessment and Suppression) presented in this paper will provide a means of testing non-grounded control strategies in order to help these people. For instance, biomechanical loading, in particular, viscous loading of the upper limb has been proposed in the literature as a means for suppressing pathologic tremor. This article describes in detail the general concept for WOTAS, outlining the special features of the design and selection of system components.


Sensors | 2010

Real-time estimation of pathological tremor parameters from gyroscope data.

J. A. Gallego; Eduardo Rocon; Javier O. Roa; Juan Moreno; José Luis Pons

This paper presents a two stage algorithm for real-time estimation of instantaneous tremor parameters from gyroscope recordings. Gyroscopes possess the advantage of providing directly joint rotational speed, overcoming the limitations of traditional tremor recording based on accelerometers. The proposed algorithm first extracts tremor patterns from raw angular data, and afterwards estimates its instantaneous amplitude and frequency. Real-time separation of voluntary and tremorous motion relies on their different frequency contents, whereas tremor modelling is based on an adaptive LMS algorithm and a Kalman filter. Tremor parameters will be employed to drive a neuroprosthesis for tremor suppression based on biomechanical loading.


Medical & Biological Engineering & Computing | 2008

Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness

Juan Moreno; Fernando Brunetti; Eduardo Rocon; José L. Pons

Application of intermittent control of the knee joint stiffness in a knee ankle foot orthosis (KAFO) during gait is proposed. The approach combines inertial sensors and an actuator system in order to apply compensation in quadriceps weakness with a wearable device. Two methods, segment-angular rotation based and segment-angular velocity based, are analysed for the control of the knee joint state (intermittent stiffness) based on the inertial sensors signals. Protocolled tests are developed with two post-polio syndrome patients (PPS). In this study, the cases of gait with free-swinging leg and safe stance with the orthotic system are presented in terms of quantified kinematics (average peak angle of knee flexion of 50°) and evidences of reduction of frequent compensations (e.g. leg lateral movement) in post-polio syndrome patients. The results from immediate inspection indicate an important improvement of the gait patterns in two patients with proximal leg weakness by means of compensations applied by the wearable orthosis.


The Cerebellum | 2007

Mechanical suppression of essential tremor.

Eduardo Rocon; Mario Manto; José Luis Pons; Stéphane Camut; Juan Manuel Belda

This paper describes a new treatment for essential tremor. A wearable orthosis, which can be adapted to each configuration of each joint of the upper limb, is able to apply effective dynamic force between consecutive segments of the upper limb and change its biomechanical characteristics. The orthosis is controlled by a computer with a dedicated software application that distinguishes between real time tremor and voluntary movement. The wearable orthosis is able to detect position, rate and acceleration of rotation of the joint by means of a chip gyroscope. This technology was evaluated in six patients suffering from essential tremor. The technique is non invasive and represents an alternative to medication and deep brain stimulation.


Journal of Neuroengineering and Rehabilitation | 2013

A neuroprosthesis for tremor management through the control of muscle co-contraction

J. A. Gallego; Eduardo Rocon; Juan Manuel Belda-Lois; José Luis Pons

BackgroundPathological tremor is the most prevalent movement disorder. Current treatments do not attain a significant tremor reduction in a large proportion of patients, which makes tremor a major cause of loss of quality of life. For instance, according to some estimates, 65% of those suffering from upper limb tremor report serious difficulties during daily living. Therefore, novel forms for tremor management are required. Since muscles intrinsically behave as a low pass filter, and tremor frequency is above that of volitional movements, the authors envisioned the exploitation of these properties as a means of developing a novel treatment alternative. This treatment would rely on muscle co-contraction for tremor management, similarly to the strategy employed by the intact central nervous system to stabilize a limb during certain tasks.MethodsWe implemented a neuroprosthesis that regulated the level of muscle co-contraction by injecting current at a pair of antagonists through transcutaneous neurostimulation. Co-contraction was adapted to the instantaneous parameters of tremor, which were estimated from the raw recordings of a pair of solid state gyroscopes with a purposely designed adaptive algorithm. For the experimental validation, we enrolled six patients suffering from parkinsonian or essential tremor of different severity, and evaluated the effect of the neuroprosthesis during standard tasks employed for neurological examination.ResultsThe neuroprosthesis attained significant attenuation of tremor (p<0.001), and reduced its amplitude up to a 52.33±25.48%. Furthermore, it alleviated both essential and parkinsonian tremor in spite of their different etiology and symptomatology. Tremor severity was not a limiting factor on the performance of the neuroprosthesis, although there was a subtle trend towards larger attenuation of more severe tremors. Tremor frequency was not altered during neurostimulation, as expected from the central origin of Parkinson’s disease and essential tremor. All patients showed a good tolerance to neurostimulation in terms of comfort and absence of pain, and some spontaneously reported that they felt that tremor was reduced when the neuroprosthesis was activated.ConclusionsThe results presented herein demonstrate that the neuroprosthesis provides systematic attenuation of the two major types of tremor, irrespectively from their severity. This study sets the basis for the validation of the neuroprosthesis as an alternative, non-invasive means for tremor management.


systems man and cybernetics | 2012

A Multimodal Human–Robot Interface to Drive a Neuroprosthesis for Tremor Management

J. A. Gallego; Jaime Ibáñez; Jakob Lund Dideriksen; Jose Ignacio Serrano; M. D. Del Castillo; Dario Farina; Eduardo Rocon

Tremor is the most prevalent movement disorder, and its incidence is increasing with aging. In spite of the numerous therapeutic solutions available, 65% of those suffering from upper limb tremor report serious difficulties during their daily living. This gives rise to research on different treatment alternatives, amongst which wearable robots that apply selective mechanical loads constitute an appealing approach. In this context, the current work presents a multimodal human-robot interface to drive a neuroprosthesis for tremor management. Our approach relies on the precise characterization of the tremor to modulate a functional electrical stimulation system that compensates for it. The neuroprosthesis is triggered by the detection of the intention to move derived from the analysis of electroencephalographic activity, which provides a natural interface with the user. When a prediction is delivered, surface electromyography serves to detect the actual onset of the tremor in the presence of volitional activity. This information in turn triggers the stimulation, which relies on tremor parameters-amplitude and frequency-derived from a pair of inertial sensors that record the kinematics of the affected joint. Surface electromyography also yields a first characterization of the tremor, together with precise information on the preferred stimulation site. Apart from allowing for an optimized performance of the system, our multimodal approach permits the implementation of redundant methods to both enhance the reliability of the system and adapt to the specific needs of different users. Results with a representative group of patients illustrate the performance of the interface presented here and demonstrate its feasibility.


Physiological Measurement | 2007

Evaluation of a wearable orthosis and an associated algorithm for tremor suppression

Mario Manto; Eduardo Rocon; José Luis Pons; Juan Manuel Belda; Stéphane Camut

We describe a wearable orthosis and an associated algorithm for the simultaneous assessment and treatment of essential tremor, one of the most common movement disorders in humans involving an overactivity of the olivo-cerebellar pathways. A motor providing effective viscosity is fixed on a wearable orthosis in the upper limbs. The motor is controlled by a personal computer with software processing in real time the position and rate of rotation of the joint detected by a chip gyroscope. The orthosis can be used in a monitoring mode and in an active mode. The range of tremor suppression of the signals above the orthosis operational limit ranges from about 3% (percentile 5) to about 79% (percentile 95) in relation to energy in the monitoring mode. Considering both postural and kinetic, the mean tremor energy decreased from 55.49 +/- 22.93 rad2 s(-3) in the monitoring mode to 15.66 +/- 7.29 rad2 s(-3) in the active mode. Medians of power reduction were below 60% for the wrist and the elbow. In addition to supplying new information on the interactions between kinematics, dynamics and tremor genesis, this non-invasive technique is an alternative to current therapies. This new approach will provide new insights into the understanding of motor control.


ieee international conference on biomedical robotics and biomechatronics | 2006

Exoskeletons for Rehabilitation and Motor Control

A.F. Ruiz; Arturo Forner-Cordero; Eduardo Rocon; José Luis Pons

Exoskeletons are mechatronic systems worn by a person in such a way that the physical interface permits a direct transfer of mechanical power and exchange of information. These robotic mechanisms have been applied in telemanipulation, man-amplifier, rehabilitation and to assist impaired human motor control. In addition, the neuromotor control research can benefit from an exoskeleton in order to manipulate human arm movements within its natural workspace, which is not possible with traditional robotic manipulandum because of its constraints. The aim of this paper is to describe a set of experiments in motor control and the application of powered upper limb exoskeleton in which the mechanical requirements of the movement will be modified, e.g. removal of the interaction torques in order to identify their impact on the production of complex coordination patterns in healthy subjects with the possibility for a future application to neurologically impaired subjects. As preliminary results, are shown responses to changes in viscosity and inertia when external perturbations (viscous load and inertia) are applied during execution of elbow angular cyclical movements using a robotic exoskeleton


International Journal of Advanced Robotic Systems | 2011

Empowering and assisting natural human mobility: The simbiosis walker

R. Ceres; Eduardo Rocon; José Luis Pons

This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of users feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staff.

Collaboration


Dive into the Eduardo Rocon's collaboration.

Top Co-Authors

Avatar

J. A. Gallego

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José Luis Pons

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rafael Raya

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J.L. Pons

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Ceres

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan Moreno

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dario Farina

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Juan Pablo Romero

Universidad Francisco de Vitoria

View shared research outputs
Researchain Logo
Decentralizing Knowledge