Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo S. Kitano is active.

Publication


Featured researches published by Eduardo S. Kitano.


Molecular & Cellular Proteomics | 2012

Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes

Alexandre K. Tashima; André Zelanis; Eduardo S. Kitano; Danielle Ianzer; Robson L. Melo; Vanessa Rioli; Sávio Stefanini Sant'Anna; Ana Clara Guerrini Schenberg; Antonio C.M. Camargo; Solange M.T. Serrano

Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 l-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from l-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4′ sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures.


Proteomics | 2009

Analysis of the subproteomes of proteinases and heparin-binding toxins of eight Bothrops venoms.

Adriana Franco Paes Leme; Eduardo S. Kitano; Maria de Fátima D. Furtado; Richard H. Valente; Antonio C.M. Camargo; Paulo L. Ho; Jay W. Fox; Solange M.T. Serrano

Viperid snakes show the most complex snake‐venom proteomes and offer an intriguing challenge in terms of understanding the nature of their components and the pathological outcomes of envenomation characterized by local and systemic effects. In this work, the venom complexity of eight Bothrops species was analyzed by 2‐DE, and their subproteomes of proteinases were explored by 2‐D immunostaining and 2‐D gelatin zymography, demonstrating the diversity of their profiles. Heparin, a highly sulfated glycosaminoglycan released from mast cells, is involved in anti‐coagulant and anti‐inflammatory processes. Here, we explored the hypothesis that heparin released upon envenomation could interact with toxins and interfere with venom pathogenesis. We first identified the Bothrops venom subproteome of toxins that bind with high‐affinity for heparin as composed of mainly serine proteinases and C‐type lectins. Next, we explored the Bothrops jararaca toxins that bind to heparin under physiological conditions and identified a relationship between the subproteomes of proteinases, and that of heparin‐binding toxins. Only the non‐bound fraction, composed mainly of metalloproteinases, showed lethal and hemorrhagic activities, whereas the heparin‐bound fraction contained mainly serine proteinases associated with coagulant and fibrinogenolytic activities. These data suggest that heparin binding to B. jararaca venom components in vivo has a minor protective effect to venom toxicity.


Journal of Proteome Research | 2013

Individual Variability in the Venom Proteome of Juvenile Bothrops jararaca Specimens

Gabriela S. Dias; Eduardo S. Kitano; Ana Helena Pagotto; Sávio Stefanini Sant'Anna; Marisa Maria Teixeira da Rocha; André Zelanis; Solange M.T. Serrano

Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of Bothrops jararaca of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LC-MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most B. jararaca toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in B. jararaca exists from a very early animal age and is not a result of ontogenetic and diet changes.


Journal of Proteomics | 2016

Proteomic identification of gender molecular markers in Bothrops jararaca venom.

André Zelanis; Milene C. Menezes; Eduardo S. Kitano; Tarcísio Liberato; Alexandre K. Tashima; Antônio Frederico Michel Pinto; Nicholas E. Sherman; Paulo L. Ho; Jay W. Fox; Solange M.T. Serrano

UNLABELLED Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. BIOLOGICAL SIGNIFICANCE Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being larger than males. This sexual size dimorphism suggests the tendency for female specimens to feed on larger prey, and for male specimens to go on a diet similar to that of juveniles. Variation in the snake venom proteome is a ubiquitous phenomenon occurring at all taxonomic levels. At the intraspecific variation level, the individual contribution to the venom proteome is important but effects contributed by age and feeding habits may also affect the proteome phenotype. Whether sex-based factors play a role in venom variation of a species that shows sexual size dimorphism is poorly known. The use of proteomic strategies supported by transcriptomic data allows a more comprehensive assessment of venom proteomes uncovering components that are gender-specific.


Parasites & Vectors | 2016

Echinococcus granulosus Antigen B binds to monocytes and macrophages modulating cell response to inflammation

Valeria Silva-Álvarez; Ana Maite Folle; Ana Lía Ramos; Eduardo S. Kitano; Leo K. Iwai; Inés Corraliza; Betina Córsico; Ana Maria da Costa Ferreira

BackgroundAntigen B (EgAgB) is an abundant lipoprotein released by the larva of the cestode Echinococcus granulosus into the host tissues. Its protein moiety belongs to the cestode-specific family known as hydrophobic ligand binding protein (HLBP), and is encoded by five gene subfamilies (EgAgB8/1-EgAgB8/5). The functions of EgAgB in parasite biology remain unclear. It may play a role in the parasite’s lipid metabolism since it carries host lipids that E. granulosus is unable to synthesise. On the other hand, there is evidence supporting immuno-modulating activities in EgAgB, particularly on innate immune cells. Both hypothetical functions might involve EgAgB interactions with monocytes and macrophages, which have not been formally analysed yet.MethodsEgAgB binding to monocytes and macrophages was studied by flow cytometry using inflammation-recruited peritoneal cells and the THP-1 cell line. Involvement of the protein and phospholipid moieties in EgAgB binding to cells was analysed employing lipid-free recombinant EgAgB subunits and phospholipase D treated-EgAgB (lacking the polar head of phospholipids). Competition binding assays with plasma lipoproteins and ligands for lipoprotein receptors were performed to gain information about the putative EgAgB receptor(s) in these cells. Arginase-I induction and PMA/LPS-triggered IL-1β, TNF-α and IL-10 secretion were examined to investigate the outcome of EgAgB binding on macrophage response.ResultsMonocytes and macrophages bound native EgAgB specifically; this binding was also found with lipid-free rEgAgB8/1 and rEgAgB8/3, but not rEgAgB8/2 subunits. EgAgB phospholipase D-treatment, but not the competition with phospholipid vesicles, caused a strong inhibition of EgAgB binding activity, suggesting an indirect contribution of phospholipids to EgAgB-cell interaction. Furthermore, competition binding assays indicated that this interaction may involve receptors with affinity for plasma lipoproteins. At functional level, the exposure of macrophages to EgAgB induced a very modest arginase-I response and inhibited PMA/LPS-mediated IL-1β and TNF-α secretion in an IL-10-independent manner.ConclusionEgAgB and, particularly its predominant EgAgB8/1 apolipoprotein, are potential ligands for monocyte and macrophage receptors. These receptors may also be involved in plasma lipoprotein recognition and induce an anti-inflammatory phenotype in macrophages upon recognition of EgAgB.


Drug Discovery Today | 2016

Proteomics and drug discovery in cancer.

Matheus H. Dias; Eduardo S. Kitano; André Zelanis; Leo K. Iwai

Proteomics has emerged as an invaluable tool in the quest to unravel the biochemical changes that give rise to the hallmarks of cancer. In this review, we present the advances and challenges facing proteomics technology as applied to cancer research, and address how the information gathered so far has helped to enhance understanding of the mechanisms underlying the disease and contributed to the discovery of biomarkers and new drug targets. We conclude by presenting a perspective on how proteomics could be applied in the future to determine prognostic biomarkers and direct strategies for effective cancer treatment.


Journal of Proteomics | 2017

Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential antimicrobial activity

Thiago F. Abreu; Bianca N. Sumitomo; Milton Yutaka Nishiyama; Ursula Castro de Oliveira; Gustavo H. M. F. Souza; Eduardo S. Kitano; André Zelanis; Solange M.T. Serrano; Inácio de L.M. Junqueira-de-Azevedo; Pedro Ismael da Silva; Alexandre K. Tashima

Acanthoscurria gomesiana is a Brazilian spider from the Theraphosidae family inhabiting regions of Southeastern Brazil. Potent antimicrobial peptides as gomesin and acanthoscurrin have been discovered from the spider hemolymph in previous works. Spider venoms are also recognized as sources of biologically active peptides, however the venom peptidome of A. gomesiana remained unexplored to date. In this work, a MS-based workflow was applied to the investigation of the spider venom peptidome. Data-independent and data-dependent LC-MS/MS acquisitions of intact peptides and of peptides submitted to multiple enzyme digestions, followed by automated chromatographic alignment, de novo analysis, database and homology searches with manual validations showed that the venom is composed by <165 features, with masses ranging from 0.4-15.8kDa. From digestions, 135 peptides were identified from 17 proteins, including three new mature peptides: U1-TRTX-Agm1a, U1-TRTX-Agm2a and U1-TRTX-Agm3a, containing 3, 4 and 3 disulfide bonds, respectively. The toxins U1-TRTX-Agm1a differed by only one amino acid from U1-TRTX-Ap1a from A. paulensis and U1-TRTX-Agm2a was derived from the genicutoxin-D1 precursor from A. geniculata. These toxins have potential applications as antimicrobial agents, as the peptide fraction of A. gomesiana showed activity against Escherichia coli, Enterobacter cloacae and Candida albicans strains. MS data are available via ProteomeXchange Consortium with identifier PXD003884. BIOLOGICAL SIGNIFICANCE Biological fluids of the Acanthoscurria gomesiana spider are sources of active molecules, as is the case of antimicrobial peptides and acylpolyamines found in the hemolymphs. The venom is also a potential source of toxins with pharmacological and biotechnological applications. However, to our knowledge no A. gomesiana venom toxin structure has been determined to date. Using a combination of high resolution mass spectrometry, transcriptomics and bioinformatics, we employed a workflow to fully sequence, determine the number of disulfide bonds of mature peptides and we found new potential antimicrobial peptides. This workflow is suitable for complete peptide toxin sequencing when handling limited amount of venom samples and can accelerate the discovery of peptides with potential biotechnological applications.


Journal of Proteome Research | 2016

Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes

Débora Andrade-Silva; André Zelanis; Eduardo S. Kitano; Inácio L.M. Junqueira-de-Azevedo; Marcelo S. Reis; Aline Lopes; Solange M.T. Serrano

Snake venoms are biological weapon systems composed of secreted proteins and peptides that are used for immobilizing or killing prey. Although post-translational modifications are widely investigated because of their importance in many biological phenomena, we currently still have little understanding of how protein glycosylation impacts the variation and stability of venom proteomes. To address these issues, here we characterized the venom proteomes of seven Bothrops snakes using a shotgun proteomics strategy. Moreover, we compared the electrophoretic profiles of native and deglycosylated venoms and, in order to assess their subproteomes of glycoproteins, we identified the proteins with affinity for three lectins with different saccharide specificities and their putative glycosylation sites. As proteinases are abundant glycosylated toxins, we examined the effect of N-deglycosylation on their catalytic activities and show that the proteinases of the seven venoms were similarly affected by removal of N-glycans. Moreover, we prospected putative glycosylation sites of transcripts of a B. jararaca venom gland data set and detected toxin family related patterns of glycosylation. Based on our global analysis, we report that Bothrops venom proteomes and glycoproteomes contain a core of components that markedly define their composition, which is conserved upon evolution in parallel to other molecular markers that determine their phylogenetic classification.


Journal of Proteome Research | 2014

Exploring Potential Virulence Regulators in Paracoccidioides brasiliensis Isolates of Varying Virulence through Quantitative Proteomics

Daniele Gonçalves Castilho; Alison Felipe Alencar Chaves; Patricia Xander; André Zelanis; Eduardo S. Kitano; Solange M.T. Serrano; Alexandre K. Tashima; Wagner L. Batista

Few virulence factors have been identified for Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. In this study, we quantitatively evaluated the protein composition of P. brasiliensis in the yeast phase using minimal and rich media to obtain a better understanding of its virulence and to gain new insights into pathogen adaptation strategies. This analysis was performed on two isolates of the Pb18 strain showing distinct infection profiles in B10.A mice. Using liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis, we identified and quantified 316 proteins in minimal medium, 29 of which were overexpressed in virulent Pb18. In rich medium, 29 out of 295 proteins were overexpressed in the virulent fungus. Three proteins were found to be up-regulated in both media, suggesting the potential roles of these proteins in virulence regulation in P. brasiliensis. Moreover, genes up-regulated in virulent Pb18 showed an increase in its expression after the recovery of virulence of attenuated Pb18. Proteins up-regulated in both isolates were grouped according to their functional categories. Virulent Pb18 undergoes metabolic reorganization and increased expression of proteins involved in fermentative respiration. This approach allowed us to identify potential virulence regulators and provided a foundation for achieving a molecular understanding of how Paracoccidioides modulates the host-pathogen interaction to its advantage.


Biochimica et Biophysica Acta | 2014

Proteoforms of the platelet-aggregating enzyme PA-BJ, a serine proteinase from Bothrops jararaca venom

Edson T. Yamashiro; Ana K. Oliveira; Eduardo S. Kitano; Milene C. Menezes; Inácio de L.M. Junqueira-de-Azevedo; Adriana Franco Paes Leme; Solange M.T. Serrano

Snake venoms contain serine proteinases that are functionally similar to thrombin and specifically cleave fibrinogen to convert it into fibrin or activate platelets to aggregation. PA-BJ is a serine proteinase from Bothrops jararaca venom that promotes platelet aggregation and this effect is mediated by the G-coupled protein receptors PAR1 and PAR4. In this study we describe an improved procedure to obtain PA-BJ from B. jararaca venom that uses less chromatographic steps, and, interestingly, results in the isolation of eight proteoforms showing slightly different pIs and molecular masses due to variations in their glycosylation levels. The identity of the isolated PA-BJ forms (1-8) was confirmed by mass spectrometry, and they showed similar platelet-activating activity on washed platelet suspensions. N- and O-deglycosylation of PA-BJ 1-8 under denaturing conditions generated variable electrophoretic profiles and showed that some forms were resistant to complete deglycosylation. Furthermore, N- and O-deglycosylation under non-denaturing conditions also showed different electrophoretic profiles between the PA-BJ forms and caused partial loss of their ability to cleave a recombinant exodomain of PAR1 receptor. In parallel, three cDNAs encoding PA-BJ-like enzymes were identified by pyrosequencing of a B. jararaca venom gland library constructed with RNA from a single specimen. Taken together, our results suggest that PA-BJ occurs in the B. jararaca venom in multiple proteoforms displaying similar properties upon platelets regardless of their variable isoelectric points, molecular masses, carbohydrate moieties and susceptibility to the activity of glycosidases, and highlight that variability of specific venom components contributes to venom proteome complexity.

Collaboration


Dive into the Eduardo S. Kitano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre K. Tashima

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tarcísio Liberato

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Isabella Fukushima

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge