Eduardo Zorita
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eduardo Zorita.
Journal of Climate | 2007
Gabriele C. Hegerl; Thomas J. Crowley; Myles R. Allen; William T. Hyde; Henry N. Pollack; Jason E. Smerdon; Eduardo Zorita
Abstract Climate records over the last millennium place the twentieth-century warming in a longer historical context. Reconstructions of millennial temperatures show a wide range of variability, raising questions about the reliability of currently available reconstruction techniques and the uniqueness of late-twentieth-century warming. A calibration method is suggested that avoids the loss of low-frequency variance. A new reconstruction using this method shows substantial variability over the last 1500 yr. This record is consistent with independent temperature change estimates from borehole geothermal records, compared over the same spatial and temporal domain. The record is also broadly consistent with other recent reconstructions that attempt to fully recover low-frequency climate variability in their central estimate. High variability in reconstructions does not hamper the detection of greenhouse gas–induced climate change, since a substantial fraction of the variance in these reconstructions from the ...
Developments in Earth and Environmental Sciences | 2006
Jürg Luterbacher; Elena Xoplaki; Carlo Casty; Heinz Wanner; Andreas Pauling; Marcel Küttel; This Rutishauser; Stefan Brönnimann; Erich M. Fischer; Dominik Fleitmann; Fidel González-Rouco; Ricardo García-Herrera; Mariano Barriendos; Fernando Rodrigo; Jose Carlos Gonzalez-Hidalgo; Miguel Angel Saz; Luis Gimeno; Pedro Ribera; Manolo Brunet; Heiko Paeth; Norel Rimbu; Thomas Felis; Jucundus Jacobeit; Armin Dünkeloh; Eduardo Zorita; Joël Guiot; Murat Türkeş; Maria João Alcoforado; Ricardo M. Trigo; Dennis A Wheeler
Publisher Summary This chapter discusses a necessary task for assessing to which degree the industrial period is unusual against the background of pre-industrial climate variability. It is the reconstruction and interpretation of temporal and spatial patterns of climate in earlier centuries. There are distinct differences in the temporal resolution among the various proxies. Some of the proxy records are annually or even higher resolved and hence record year-by-year patterns of climate in past centuries. Several of the temperature reconstructions reveal that the late twentieth century warmth is unprecedented at hemispheric scales and is explained by anthropogenic, greenhouse gas (GHG) forcing. The chapter discusses the availability and potential of long, homogenized instrumental data, documentary, and natural proxies to reconstruct aspects of past climate at local- to regional-scales within the larger Mediterranean area, which includes climate extremes and the incidence of natural disasters. The chapter describes the role of external forcing, including natural and anthropogenic influences, and natural, internal variability in the coupled ocean–atmosphere system at subcontinental scale.
Journal of Climate | 2003
Eduardo Zorita; Fidel González-Rouco; Stephanie Legutke
Statistical reconstructions of past climate variability based on climate indicators face several uncertainties: for instance, to what extent is the network of available proxy indicators dense enough for a meaningful estimation of past global temperatures?; can statistical models, calibrated with data at interannual timescales be used to estimate the low-frequency variability of the past climate?; and what is the influence of the limited spatial coverage of the instrumental records used to calibrate the statistical models? Possible answers to these questions are searched by applying the statistical method of Mann et al. to a long control climate simulation as a climate surrogate. The role of the proxy indicators is played by the temperature simulated by the model at selected grid points. It is found that generally a set of a few tens of climate indicators is enough to provide a meaningful estimation (resolved variance of about 30%) of the simulated global annual temperature at annual timescales. The reconstructions based on around 10 indicators are barely able to resolve 10% of the temperature variance. The skill of the regression model increases at lower frequencies, so that at timescales longer than 20 yr the explained variance may reach 65%. However, the reconstructions tend to underestimate some periods of global cooling that are associated with temperatures anomalies off the Antarctic coast and south of Greenland lasting for about 20 yr. Also, it is found that in one 100-yr period, the low-frequency behavior of the global temperature evolution is not well reproduced, the error being probably related to tropical dynamics. This analysis could be influenced by the lack of a realistic variability of external forcing in the simulation and also by the quality of simulated key variability modes, such as ENSO. Both factors can affect the largescale coherence of the temperature field and, therefore, the skill of the statistical models.
Developments in Earth and Environmental Sciences | 2006
Ricardo M. Trigo; Elena Xoplaki; Eduardo Zorita; Jürg Luterbacher; Simon O. Krichak; Pinhas Alpert; Jucundus Jacobeit; Jon Sáenz; Jesús Fernández; Fidel González-Rouco; Ricardo García-Herrera; Xavier Rodó; Michele Brunetti; Teresa Nanni; Maurizio Maugeri; Mura Türke; Luis Gimeno; Pedro Ribera; Manola Brunet; Isabel F. Trigo; Michel Crepon; Annarita Mariotti
Publisher Summary The Mediterranean climate is under the influence of both tropical and mid-latitude climate dynamics, being directly affected by continental and maritime air masses with significant origin differences. The peak of the winter season occurs between December and February, when the mid-latitude cyclone belt has usually reached its southernmost position. However, spring and autumn also contribute to a significant amount of precipitation. Being located at the southern limit of the North Atlantic storm tracks; the Mediterranean region is particularly sensitive to interannual shifts in the trajectories of mid-latitude cyclones that can lead to the remarkable anomalies of precipitation and, to a lesser extent, of temperature. Storm-track variability impacts primarily the western Mediterranean, but it hasa signature clearly detected in the eastern Mediterranean as well. The complex orography that characterizes most regions surrounding the Mediterranean basin can modulate and even distort climate anomaly patterns that otherwise would be geographically much more homogenous. Lack of water in winter and spring reflects in the crop yield. However, too much water in winter is harmful by drowning the seeds and retarding root development. The variability of precipitation plays a crucial role in the management of regional agriculture, in environment, in water resources and ecosystems, as well as social development and behavior.
The Climate of the Mediterranean Region | 2012
Jürg Luterbacher; Ricardo García-Herrera; Sena Akçer-Ön; Rob Allan; Maria-Carmen Alvarez-Castro; Gerardo Benito; Jonathan Booth; Ulf Büntgen; Namik Cagatay; Daniele Colombaroli; Basil A. S. Davis; Jan Esper; Thomas Felis; Dominik Fleitmann; David Frank; David Gallego; E. García-Bustamante; Ruediger Glaser; Fidel González-Rouco; Hugues Goosse; Thorsten Kiefer; Mark G. Macklin; Sturt W. Manning; Paolo Montagna; Louise Newman; Mitchell J. Power; Volker Rath; Pedro Ribera; Dirk Riemann; Neil Roberts
The integration of climate information from instrumental data and documentary and natural archives; evidence of past human activity derived from historical, paleoecological, and archaeological records; and new climate modeling techniques promises major breakthroughs for our understanding of climate sensitivity, ecological processes, environmental response, and human impact. In this chapter, we review the availability and potential of instrumental data, less well-known written records, and terrestrial and marine natural proxy archives for climate in the Mediterranean region over the last 2000 years. We highlight the need to integrate these different proxy archives and the importance for multiproxy studies of disentangling complex relationships among climate, sea-level changes, fire, vegetation, and forests, as well as land use and other human impacts. Focusing on dating uncertainties, we address seasonality effects and other uncertainties in the different proxy records. We describe known and anticipated challenges posed by integrating multiple diverse proxies in high-resolution climate-variation reconstructions, including proxy limitations to robust reconstruction of the natural range of climate variability and problems specific to temporal scales from interannual to multicentennial. Finally, we highlight the potential of paleo models to contribute to climate reconstructions in the Mediterranean, by narrowing the range of climate-sensitivity estimates and by assimilating multiple proxies.
The Holocene | 2013
Danny McCarroll; Neil J. Loader; Risto Jalkanen; Mary Gagen; Håkan Grudd; Björn E. Gunnarson; Andreas J. Kirchhefer; Michael Friedrich; Hans W. Linderholm; Markus Lindholm; Tatjana Boettger; S.O. Los; Sabine Remmele; Yuri M. Kononov; Yasuhiro H. Yamazaki; Giles H. F. Young; Eduardo Zorita
Combining nine tree growth proxies from four sites, from the west coast of Norway to the Kola Peninsula of NW Russia, provides a well replicated (> 100 annual measurements per year) mean index of tree growth over the last 1200 years that represents the growth of much of the northern pine timberline forests of northern Fennoscandia. The simple mean of the nine series, z-scored over their common period, correlates strongly with mean June to August temperature averaged over this region (r = 0.81), allowing reconstructions of summer temperature based on regression and variance scaling. The reconstructions correlate significantly with gridded summer temperatures across the whole of Fennoscandia, extending north across Svalbard and south into Denmark. Uncertainty in the reconstructions is estimated by combining the uncertainty in mean tree growth with the uncertainty in the regression models. Over the last seven centuries the uncertainty is < 4.5% higher than in the 20th century, and reaches a maximum of 12% above recent levels during the 10th century. The results suggest that the 20th century was the warmest of the last 1200 years, but that it was not significantly different from the 11th century. The coldest century was the 17th. The impact of volcanic eruptions is clear, and a delayed recovery from pairs or multiple eruptions suggests the presence of some positive feedback mechanism. There is no clear and consistent link between northern Fennoscandian summer temperatures and solar forcing.
Nature | 2016
Fredrik Charpentier Ljungqvist; Paul J. Krusic; Hanna S. Sundqvist; Eduardo Zorita; Gudrun Brattström; David Frank
Accurate modelling and prediction of the local to continental-scale hydroclimate response to global warming is essential given the strong impact of hydroclimate on ecosystem functioning, crop yields, water resources, and economic security. However, uncertainty in hydroclimate projections remains large, in part due to the short length of instrumental measurements available with which to assess climate models. Here we present a spatial reconstruction of hydroclimate variability over the past twelve centuries across the Northern Hemisphere derived from a network of 196 at least millennium-long proxy records. We use this reconstruction to place recent hydrological changes and future precipitation scenarios in a long-term context of spatially resolved and temporally persistent hydroclimate patterns. We find a larger percentage of land area with relatively wetter conditions in the ninth to eleventh and the twentieth centuries, whereas drier conditions are more widespread between the twelfth and nineteenth centuries. Our reconstruction reveals that prominent seesaw patterns of alternating moisture regimes observed in instrumental data across the Mediterranean, western USA, and China have operated consistently over the past twelve centuries. Using an updated compilation of 128 temperature proxy records, we assess the relationship between the reconstructed centennial-scale Northern Hemisphere hydroclimate and temperature variability. Even though dry and wet conditions occurred over extensive areas under both warm and cold climate regimes, a statistically significant co-variability of hydroclimate and temperature is evident for particular regions. We compare the reconstructed hydroclimate anomalies with coupled atmosphere–ocean general circulation model simulations and find reasonable agreement during pre-industrial times. However, the intensification of the twentieth-century-mean hydroclimate anomalies in the simulations, as compared to previous centuries, is not supported by our new multi-proxy reconstruction. This finding suggests that much work remains before we can model hydroclimate variability accurately, and highlights the importance of using palaeoclimate data to place recent and predicted hydroclimate changes in a millennium-long context.
Climate Dynamics | 2013
Sonia Jerez; Juan Pedro Montavez; Pedro Jiménez-Guerrero; Juan J. Gomez-Navarro; R. Lorente-Plazas; Eduardo Zorita
This work assesses the influence of the model physics in present-day regional climate simulations. It is based on a multi-phyiscs ensemble of 30-year long MM5 hindcasted simulations performed over a complex and climatically heterogeneous domain as the Iberian Peninsula. The ensemble consists of eight members that results from combining different parametrization schemes for modeling the Planetary Boundary Layer, the cumulus and the microphysics processes. The analysis is made at the seasonal time scale and focuses on mean values and interannual variability of temperature and precipitation. The objectives are (1) to evaluate and characterize differences among the simulations attributable to changes in the physical options of the regional model, and (2) to identify the most suitable parametrization schemes and understand the underlying mechanisms causing that some schemes perform better than others. The results confirm the paramount importance of the model physics, showing that the spread among the various simulations is of comparable magnitude to the spread obtained in similar multi-model ensembles. This suggests that most of the spread obtained in multi-model ensembles could be attributable to the different physical configurations employed in the various models. Second, we obtain that no single ensemble member outperforms the others in every situation. Nevertheless, some particular schemes display a better performance. On the one hand, the non-local MRF PBL scheme reduces the cold bias of the simulations throughout the year compared to the local Eta model. The reason is that the former simulates deeper mixing layers. On the other hand, the Grell parametrization scheme for cumulus produces smaller amount of precipitation in the summer season compared to the more complex Kain-Fritsch scheme by reducing the overestimation in the simulated frequency of the convective precipitation events. Consequently, the interannual variability of precipitation (temperature) diminishes (increases), which implies a better agreement with the observations in both cases. Although these features improve in general the accuracy of the simulations, controversial nuances are also highlighted.
Journal of Climate | 1997
Eduardo Zorita; Claude Frankignoul
Abstract The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean–atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean–atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air–sea fluxes and Ekman pumping, which after some delay affects the intensity of t...
Climatic Change | 2014
Oliver Wetter; Christian Pfister; Johannes P. Werner; Eduardo Zorita; Sebastian Wagner; Sonia I. Seneviratne; Jürgen Herget; Uwe Grünewald; Jürg Luterbacher; Maria João Alcoforado; Mariano Barriendos; Ursula Bieber; Rudolf Brázdil; Karl H. Burmeister; Chantal Camenisch; Antonio Contino; Petr Dobrovolný; Rüdiger Glaser; Iso Himmelsbach; Andrea Kiss; Oldřich Kotyza; Thomas Labbé; Danuta Limanówka; Laurent Litzenburger; Øyvind Nordl; Kathleen Pribyl; Dag Retsö; Dirk Riemann; Christian Rohr; Werner Siegfried
The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.