Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edurne San José-Enériz is active.

Publication


Featured researches published by Edurne San José-Enériz.


Cancer Research | 2009

Epigenetic Silencing of the Tumor Suppressor MicroRNA Hsa-miR-124a Regulates CDK6 Expression and Confers a Poor Prognosis in Acute Lymphoblastic Leukemia

Xabier Agirre; Amaia Vilas-Zornoza; Antonio Jiménez-Velasco; José I. Martín-Subero; Lucia Cordeu; Leire Garate; Edurne San José-Enériz; Gloria Abizanda; Paula Rodriguez-Otero; Puri Fortes; José Rifón; Eva Bandrés; María José Calasanz; Vanesa Martín; Anabel Heiniger; Antonio Torres; Reiner Siebert; Jose Roman-Gomez; Felipe Prosper

Whereas transcriptional silencing of genes due to epigenetic mechanisms is one of the most important alterations in acute lymphoblastic leukemia (ALL), some recent studies indicate that DNA methylation contributes to down-regulation of miRNAs during tumorigenesis. To explore the epigenetic alterations of miRNAs in ALL, we analyzed the methylation and chromatin status of the miR-124a loci in ALL. Expression of miR-124a was down-regulated in ALL by hypermethylation of the promoter and histone modifications including decreased levels of 3mk4H3 and AcH3 and increased levels of 2mK9H3, 3mK9H3, and 3mK27H3. Epigenetic down-regulation of miR-124a induced an up-regulation of its target, CDK6, and phosphorylation of retinoblastoma (Rb) and contributed to the abnormal proliferation of ALL cells both in vitro and in vivo. Cyclin-dependent kinase 6 (CDK6) inhibition by sodium butyrate or PD-0332991 decreased ALL cell growth in vitro, whereas overexpression of pre-miR124a led to decreased tumorigenicity in a xenogeneic in vivo Rag2(-/-)gammac(-/-) mouse model. The clinical implications of these findings were analyzed in a group of 353 patients diagnosed with ALL. Methylation of hsa-miR-124a was observed in 59% of the patients, which correlated with down-regulation of miR-124a (P < 0.001). Furthermore, hypermethylation of hsa-miR-124a was associated with higher relapse rate (P = 0.001) and mortality rate (P < 0.001), being an independent prognostic factor for disease-free survival (P < 0.001) and overall survival (P = 0.005) in the multivariate analysis. These results provide the grounds for new therapeutic strategies in ALL either targeting the epigenetic regulation of microRNAs and/or directly targeting the CDK6-Rb pathway.


Molecular Cancer Research | 2008

Down-Regulation of hsa-miR-10a in Chronic Myeloid Leukemia CD34+ Cells Increases USF2-Mediated Cell Growth

Xabier Agirre; Antonio Jiménez-Velasco; Edurne San José-Enériz; Leire Garate; Eva Bandrés; Lucia Cordeu; Oscar Aparicio; Borja Saez; German Navarro; Amaia Vilas-Zornoza; Ignacio Pérez-Roger; Jesús García-Foncillas; Antonio J. Torres; Anabel Heiniger; María José Calasanz; Puri Fortes; Jose Roman-Gomez; Felipe Prosper

MicroRNAs (miRNA) are small noncoding, single-stranded RNAs that inhibit gene expression at a posttranscriptional level, whose abnormal expression has been described in different tumors. The aim of our study was to identify miRNAs potentially implicated in chronic myeloid leukemia (CML). We detected an abnormal miRNA expression profile in mononuclear and CD34+ cells from patients with CML compared with healthy controls. Of 157 miRNAs tested, hsa-miR-10a, hsa-miR-150, and hsa-miR-151 were down-regulated, whereas hsa-miR-96 was up-regulated in CML cells. Down-regulation of hsa-miR-10a was not dependent on BCR-ABL1 activity and contributed to the increased cell growth of CML cells. We identified the upstream stimulatory factor 2 (USF2) as a potential target of hsa-miR-10a and showed that overexpression of USF2 also increases cell growth. The clinical relevance of these findings was shown in a group of 85 newly diagnosed patients with CML in which expression of hsa-miR-10a was down-regulated in 71% of the patients, whereas expression of USF2 was up-regulated in 60% of the CML patients, with overexpression of USF2 being significantly associated with decreased expression of hsa-miR-10a (P = 0.004). Our results indicate that down-regulation of hsa-miR-10a may increase USF2 and contribute to the increase in cell proliferation of CML implicating a miRNA in the abnormal behavior of CML. (Mol Cancer Res 2008;6(12):1830–40)


European Journal of Heart Failure | 2008

Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium

Maitane Pérez-Ilzarbe; Onnik Agbulut; Beatriz Pelacho; Cristina Ciorba; Edurne San José-Enériz; Michel Desnos; Albert Hagège; Pablo Aranda; Enrique J. Andreu; Philippe Menasché; Felipe Prosper

The discrepancy between the functional improvements yielded experimentally by skeletal myoblasts (SM) transplanted in infarcted myocardium and the paucity of their long‐term engraftment has raised the hypothesis of cell‐mediated paracrine mechanisms.


Molecular Cancer | 2009

MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations.

Edurne San José-Enériz; Jose Roman-Gomez; Antonio Jiménez-Velasco; Leire Garate; Vanesa Martin; Lucia Cordeu; Amaia Vilas-Zornoza; Paula Rodriguez-Otero; María José Calasanz; Felipe Prosper; Xabier Agirre

The development of Imatinib Mesylate (IM), the first specific inhibitor of BCR-ABL1, has had a major impact in patients with Chronic Myeloid Leukemia (CML), establishing IM as the standard therapy for CML. Despite the clinical success obtained with the use of IM, primary resistance to IM and molecular evidence of persistent disease has been observed in 20-25% of IM treated patients. The existence of second generation TK inhibitors, which are effective in patients with IM resistance, makes identification of predictors of resistance to IM an important goal in CML. In this study, we have identified a group of 19 miRNAs that may predict clinical resistance to IM in patients with newly diagnosed CML.


Clinical Cancer Research | 2006

CpG Island Methylator Phenotype Redefines the Prognostic Effect of t(12;21) in Childhood Acute Lymphoblastic Leukemia

Jose Roman-Gomez; Antonio Jiménez-Velasco; Xabier Agirre; Juan A. Castillejo; German Navarro; María José Calasanz; Leire Garate; Edurne San José-Enériz; Lucia Cordeu; Felipe Prosper; Anabel Heiniger; Antonio Torres

Purpose: To examine cancer genes undergoing epigenetic inactivation in a set of ETV6/RUNX1-positive acute lymphoblastic leukemias in order to define the CpG island methylator phenotype (CIMP) in the disease and evaluate its relationship with clinical features and outcome. Experimental Design: Methylation-specific PCR was used to analyze the methylation status of 38 genes involved in cell immortalization and transformation in 54 ETV6/RUNX1-positive samples in comparison with 190 ETV6/RUNX1-negative samples. Results:ETV6/RUNX1-positive samples had at least one gene methylated in 89% of the cases. According to the number of methylated genes observed in each individual sample, 20 patients (37%) were included in the CIMP− group (0-2 methylated genes) and 34 (67%) in the CIMP+ group (>2 methylated genes). Remission rate did not differ significantly among either group of patients. Estimated disease-free survival and overall survival at 9 years were 92% and 100% for the CIMP− group and 33% and 73% for the CIMP+ group (P = 0.002 and P = 0.04, respectively). Multivariate analysis showed that methylation profile was an independent prognostic factor in predicting disease-free survival (P = 0.01) and overall survival (P = 0.05). A group of four genes (DKK3, sFRP2, PTEN, and P73) showed specificity for ETV6/RUNX1-positive subset of samples. Conclusion: Our results suggest that methylation profile may be a potential new biomarker of risk prediction in ETV6/RUNX1-positive acute lymphoblastic leukemias.


PLOS ONE | 2011

Frequent and Simultaneous Epigenetic Inactivation of TP53 Pathway Genes in Acute Lymphoblastic Leukemia

Amaia Vilas–Zornoza; Xabier Agirre; Vanesa Martín-Palanco; José I. Martín-Subero; Edurne San José-Enériz; Leire Garate; Sara Alvarez; Estíbaliz Miranda; Paula Rodriguez-Otero; José Rifón; Antonio Faustino Torres; María José Calasanz; Juan C. Cigudosa; Jose Roman-Gomez; Felipe Prosper

Aberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL). Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL samples at diagnosis (n = 48). We found that 154 genes were methylated in more than 10% of ALL samples. Interestingly, the expression of 13 genes implicated in the TP53 pathway was downregulated by hypermethylation. Direct or indirect activation of TP53 pathway with 5-aza-2′-deoxycitidine, Curcumin or Nutlin-3 induced an increase in apoptosis of ALL cells. The results obtained with the initial group of 48 patients was validated retrospectively in a second cohort of 200 newly diagnosed ALL patients. Methylation of at least 1 of the 13 genes implicated in the TP53 pathway was observed in 78% of the patients, which significantly correlated with a higher relapse (p = 0.001) and mortality (p<0.001) rate being an independent prognostic factor for disease-free survival (DFS) (p = 0.006) and overall survival (OS) (p = 0.005) in the multivariate analysis. All these findings indicate that TP53 pathway is altered by epigenetic mechanisms in the majority of ALL patients and correlates with prognosis. Treatments with compounds that may reverse the epigenetic abnormalities or activate directly the p53 pathway represent a new therapeutic alternative for patients with ALL.


British Journal of Haematology | 2011

Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family.

Paula Rodriguez-Otero; Jose Roman-Gomez; Amaia Vilas-Zornoza; Edurne San José-Enériz; Vanesa Martín-Palanco; José Rifón; Antonio Torres; María José Calasanz; Xabier Agirre; Felipe Prosper

The role of epigenetic mechanisms in the regulation of microRNAs (miRNAs) with a tumour‐suppressor function in human neoplasms has recently been established. Several miRNAs have been found to be inappropriately regulated by DNA methylation in patients with acute lymphoblastic leukaemia (ALL). We analysed the methylation status of the three members of the MIR9 family (MIR9‐1, MIR9‐2 and MIR9‐3) in a uniformly treated cohort of 200 newly diagnosed ALLs. MIR9 was methylated in 54% of the patients and was associated with downregulation of MIR9 (P < 0·01). Hypermethylation of MIR9 was an independent prognostic factor for disease‐free survival, overall survival and event‐free survival in a multivariate analysis (P < 0·01). Epigenetic downregulation of MIR9 induced upregulation of its targets, FGFR1 and CDK6, while treatment of ALL cells with FGFR1 (PD‐173074) and CDK6 (PD‐0332991) inhibitors induced a decrease in cell proliferation and an increase in apoptosis of ALL cells. Our results indicate that the MIR9 family is involved in the pathogenesis and clinical behaviour of ALL and provide the basis for new therapeutic strategies in the treatment of ALL, targeting the epigenetic regulation of miRNAs and/or the FGFR1 or CDK6‐RB pathway directly.


Genome Research | 2015

Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

Xabier Agirre; Giancarlo Castellano; Marien Pascual; Simon Heath; Marta Kulis; Victor Segura; Anke K. Bergmann; Anna Esteve; Angelika Merkel; Emanuele Raineri; Lidia Agueda; Julie Blanc; David C. Richardson; Laura Clarke; Avik Datta; Nuria Russiñol; Ana C. Queirós; Renée Beekman; Juan R. Rodriguez-Madoz; Edurne San José-Enériz; Fang Fang; Norma C. Gutiérrez; José M. García-Verdugo; Michael I. Robson; Eric C. Schirmer; Elisabeth Guruceaga; Joost H.A. Martens; Marta Gut; María José Calasanz; Paul Flicek

While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.


British Journal of Haematology | 2006

Downregulation of DBC1 expression in acute lymphoblastic leukaemia is mediated by aberrant methylation of its promoter

Edurne San José-Enériz; Xabier Agirre; Jose Roman-Gomez; Lucia Cordeu; Leire Garate; Antonio Jiménez-Velasco; Iria Vázquez; María José Calasanz; Anabel Heiniger; Antonio Torres; Felipe Prosper

The DBC1 gene is a potential tumour suppressor gene that is commonly hypermethylated in epithelial cancers. We studied the role of promoter hypermethylation in the regulation of DBC1 in acute lymphoblastic leukaemia (ALL) cell lines and 170 ALL patients at diagnosis. Abnormal methylation of DBC1 was observed in all ALL cell lines and in 17% of ALL patients. Moreover, DBC1 methylation was associated with decreased DBC1 expression, while treatment of ALL cells with 5‐Aza‐2′‐deoxycytidine resulted in demethylation of the promoter and upregulation of DBC1 expression. Fluorescence in situ hybridisation identified the deletion of one allele of DBC1 in some ALL cell lines, which indicated that the lack of DBC1 expression was due to deletion of one allele and methylation of the other. In conclusion, these results demonstrate, for the first time, that the expression of DBC1 is downregulated in a percentage of patients with ALL due to the hypermethylation of its promoter and/or gene deletion.


Cancer Science | 2010

Epigenetic regulation of the non‐canonical Wnt pathway in acute myeloid leukemia

Vanesa Martin; Ana Valencia; Xabier Agirre; José Cervera; Edurne San José-Enériz; Amaia Vilas-Zornoza; Paula Rodriguez-Otero; Miguel A. Sanz; Concepción Herrera; Antonio J. Torres; Felipe Prosper; Jose Roman-Gomez

Wnt5a is a member of the Wnt family of proteins that signals through the non‐canonical Wnt/Ca2+pathway to suppress cyclin D1. Deregulation of this pathway has been found in animal models suggesting that it acts as tumour suppressor in acute myeloid leukemia (AML). Although DNA methylation is the main mechanism of regulation of the canonical Wnt pathway in AML, the role of WNT5A abnormalities has never been evaluated in this clinical setting. The methylation status of WNT5A promoter–exon 1 was analyzed by methylation‐specific PCR and sequencing in eleven AML‐derived cell lines and 252 AML patients. We observed WNT5A hypermethylation in seven cell lines and in 43% (107/252) of AML patients. WNT5A methylation was associated with decreased WNT5A expression (P < 0.001) that was restored after exposure to 5‐Aza‐2’‐deoxycytidine. Moreover, WNT5A hypermethylation correlated with upregulation of CYCLIN D1 expression (P < 0.001). Relapse (15%vs 37%, P < 0.001) and mortality (61%vs 79%, P = 0.004) rates were lower for patients in the non‐methylated group. Disease‐free survival and overall survival at 6 and 7 years, respectively, were 60% and 27% for unmethylated patients and 20% and 0% for hypermethylated patients (P = 0.0001 and P = 0.04, respectively). Interestingly, significant differences were also observed when the analysis was carried out according to cytogenetic risk groups. We demonstrate that WNT5A, a putative tumor suppressor gene in AML, is silenced by methylation in this disease and that this epigenetic event is associated with upregulation of CYCLIN D1 expression and confers poor prognosis in patients with AML. (Cancer Sci 2009)

Collaboration


Dive into the Edurne San José-Enériz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge