Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edvin Karlsson is active.

Publication


Featured researches published by Edvin Karlsson.


Scientific Reports | 2015

Scaffolding of a bacterial genome using MinION nanopore sequencing

Edvin Karlsson; Adrian Lärkeryd; Andreas Sjödin; Mats Forsman; Per Stenberg

Second generation sequencing has revolutionized genomic studies. However, most genomes contain repeated DNA elements that are longer than the read lengths achievable with typical sequencers, so the genomic order of several generated contigs cannot be easily resolved. A new generation of sequencers offering substantially longer reads is emerging, notably the Pacific Biosciences (PacBio) RS II system and the MinION system, released in early 2014 by Oxford Nanopore Technologies through an early access program. The latter has highly advantageous portability and sequences samples by measuring changes in ionic current when single-stranded DNA molecules are translocated through nanopores. We show that the MinION system produces long reads with high mapability that can be used for scaffolding bacterial genomes, despite currently producing substantially higher error rates than PacBio reads. With further development we anticipate that MinION will be useful not only for assembling genomes, but also for rapid detection of organisms, potentially in the field.


BMC Microbiology | 2013

German Francisella tularensis isolates from European brown hares (Lepus europaeus)reveal genetic and phenotypic diversity

Wolfgang Müller; Helmut Hotzel; Peter Otto; Axel Karger; Barbara Bettin; Herbert Bocklisch; Silke Braune; Ulrich Eskens; Stefan Hörmansdorfer; Regina Konrad; Anne Nesseler; Martin Peters; Martin Runge; Gernot Schmoock; Bernd-Andreas Schwarz; Reinhard Sting; Kerstin Myrtennäs; Edvin Karlsson; Mats Forsman; Herbert Tomaso

BackgroundTularemia is a zoonotic disease caused by Francisella tularensis that has been found in many different vertebrates. In Germany most human infections are caused by contact with infected European brown hares (Lepus europaeus). The aim of this study was to elucidate the epidemiology of tularemia in hares using phenotypic and genotypic characteristics of F. tularensis.ResultsCultivation of F. tularensis subsp. holarctica bacteria from organ material was successful in 31 of 52 hares that had a positive PCR result targeting the Ft-M19 locus. 17 isolates were sensitive to erythromycin and 14 were resistant. Analysis of VNTR loci (Ft-M3, Ft-M6 and Ft-M24), INDELs (Ftind33, Ftind38, Ftind49, RD23) and SNPs (B.17, B.18, B.19, and B.20) was shown to be useful to investigate the genetic relatedness of Francisella strains in this set of strains. The 14 erythromycin resistant isolates were assigned to clade B.I, and 16 erythromycin sensitive isolates to clade B.IV and one isolate was found to belong to clade B.II. MALDI-TOF mass spectrometry (MS) was useful to discriminate strains to the subspecies level.ConclusionsF. tularensis seems to be a re-emerging pathogen in Germany. The pathogen can easily be identified using PCR assays. Isolates can also be identified within one hour using MALDI-TOF MS in laboratories where specific PCR assays are not established. Further analysis of strains requires genotyping tools. The results from this study indicate a geographical segregation of the phylogenetic clade B.I and B.IV, where B.I strains localize primarily within eastern Germany and B.IV strains within western Germany. This phylogeographical pattern coincides with the distribution of biovar I (erythromycin sensitive) and biovar II (erythromycin resistance) strains. When time and costs are limiting parameters small numbers of isolates can be analysed using PCR assays combined with DNA sequencing with a focus on genetic loci that are most likely discriminatory among strains found in a specific area. In perspective, whole genome data will have to be investigated especially when terrorist attack strains need to be tracked to their genetic and geographical sources.


PLOS ONE | 2014

Eight New Genomes and Synthetic Controls Increase the Accessibility of Rapid Melt-MAMA SNP Typing of Coxiella burnetii

Edvin Karlsson; Anna Macellaro; Mona Byström; Mats Forsman; Dimitrios Frangoulidis; Ingmar Janse; Pär Larsson; Petter Lindgren; Caroline Öhrman; Bart J. van Rotterdam; Andreas Sjödin; Kerstin Myrtennäs

The case rate of Q fever in Europe has increased dramatically in recent years, mainly because of an epidemic in the Netherlands in 2009. Consequently, there is a need for more extensive genetic characterization of the disease agent Coxiella burnetii in order to better understand the epidemiology and spread of this disease. Genome reference data are essential for this purpose, but only thirteen genome sequences are currently available. Current methods for typing C. burnetii are criticized for having problems in comparing results across laboratories, require the use of genomic control DNA, and/or rely on markers in highly variable regions. We developed in this work a method for single nucleotide polymorphism (SNP) typing of C. burnetii isolates and tissue samples based on new assays targeting ten phylogenetically stable synonymous canonical SNPs (canSNPs). These canSNPs represent previously known phylogenetic branches and were here identified from sequence comparisons of twenty-one C. burnetii genomes, eight of which were sequenced in this work. Importantly, synthetic control templates were developed, to make the method useful to laboratories lacking genomic control DNA. An analysis of twenty-one C. burnetii genomes confirmed that the species exhibits high sequence identity. Most of its SNPs (7,493/7,559 shared by >1 genome) follow a clonal inheritance pattern and are therefore stable phylogenetic typing markers. The assays were validated using twenty-six genetically diverse C. burnetii isolates and three tissue samples from small ruminants infected during the epidemic in the Netherlands. Each sample was assigned to a clade. Synthetic controls (vector and PCR amplified) gave identical results compared to the corresponding genomic controls and are viable alternatives to genomic DNA. The results from the described method indicate that it could be useful for cheap and rapid disease source tracking at non-specialized laboratories, which requires accurate genotyping, assay accessibility and inter-laboratory comparisons.


Emerging Infectious Diseases | 2015

Hare-to-Human Transmission of Francisella tularensis subsp. holarctica, Germany

Peter Otto; Rebekka Kohlmann; Wolfgang Müller; Sandra Julich; Gabriele Geis; Sören Gatermann; Martin Peters; Peter Johannes Wolf; Edvin Karlsson; Mats Forsman; Kerstin Myrtennäs; Herbert Tomaso

In November 2012, a group of 7 persons who participated in a hare hunt in North Rhine-Westphalia, Germany, acquired tularemia. Two F. tularensis subsp. holarctica isolates were cultivated from human and hare biopsy material. Both isolates belonged to the FTN002–00 genetic subclade (derived for single nucleotide polymorphisms B.10 and B.18), thus indicating likely hare-to-human transmission.


Infectious diseases | 2015

Phylogeography of Francisella tularensis subspecies holarctica in Finland, 1993-2011.

Susanna Sissonen; Heidi Rossow; Edvin Karlsson; Heidi Hemmilä; Heikki Henttonen; Marja Isomursu; Paula M. Kinnunen; Kirsti Pelkola; Sinikka Pelkonen; Eveliina Tarkka; Kerstin Myrtennäs; Simo Nikkari; Mats Forsman

Abstract Background: Finland repeatedly reports some of the highest incidences of tularaemia worldwide. To determine genetic diversity of the aetiologic agent of tularaemia, Francisella tularensis, a total of 76 samples from humans (n = 15) and animals (n = 61) were analysed. Methods: We used CanSNPs and canINDEL hydrolysis or TaqMan MGB probes for the analyses, either directly from the clinical tissue samples (n = 21) or from bacterial isolates (n = 55). Results: The genotypes of the strains were assigned to three previously described basal subspecies holarctica clades. The majority of strains (n = 67) were assigned to B.12, a clade reported to dominate in Scandinavia and Eastern Europe. A single strain was assigned to clade B.4, previously reported from North America, Europe and China. The remaining strains (n = 8) were members of clade B.6. Importantly, new diversity was discovered in clade B.6. We describe two newly designed TaqMan MGB probe assays for this new B.6 subclade B.70, and its previously identified sister clade B.11, a clade dominantly found in Western Europe. Conclusions: The high genetic diversity of F. tularensis subspecies holarctica present in Finland is consistent with previous findings in Sweden. The results suggest a northern and southern division of the B.6 subclade B.10, where B.11 predominates in Western and Central Europe and B.70 is found in Fennoscandia. Further research is required to define whether the vast diversity of genotypes found is related to different habitats or reservoir species, their different postglacial immigration routes to Fennoscandia, or dynamics of the reservoir species.


Genome Announcements | 2014

Complete Genome Sequence of Francisella endociliophora Strain FSC1006, Isolated from a Laboratory Culture of the Marine Ciliate Euplotes raikovi

Andreas Sjödin; Caroline Öhrman; Stina Bäckman; Adrian Lärkeryd; Malin Granberg; Eva Lundmark; Edvin Karlsson; Elin Nilsson; Adriana Vallesi; Christian Tellgren-Roth; Per Stenberg; Johanna Thelaus

ABSTRACT A strain of Francisella endociliophora was isolated from a laboratory culture of the marine ciliate Euplotes raikovi. Here, we report the complete genome sequence of the bacterial strain FSC1006 (Francisella Strain Collection, Swedish Defence Research Agency, Umeå, Sweden).


Journal of Antimicrobial Chemotherapy | 2016

Clonality of erythromycin resistance in Francisella tularensis

Edvin Karlsson; Igor Golovliov; Adrian Lärkeryd; Malin Granberg; Eva Larsson; Caroline Öhrman; Marcin Niemcewicz; Dawn N. Birdsell; David M. Wagner; Mats Forsman; Anders Johansson

OBJECTIVES We analysed diverse strains of Francisella tularensis subsp. holarctica to assess if its division into biovars I and II is associated with specific mutations previously linked to erythromycin resistance and to determine the distribution of this resistance trait across this subspecies. METHODS Three-hundred and fourteen F. tularensis subsp. holarctica strains were tested for erythromycin susceptibility and whole-genome sequences for these strains were examined for SNPs in genes previously associated with erythromycin resistance. Each strain was assigned to a global phylogenetic framework using genome-wide canonical SNPs. The contribution of a specific SNP to erythromycin resistance was examined using allelic exchange. The geographical distribution of erythromycin-resistant F. tularensis strains was further investigated by literature search. RESULTS There was a perfect correlation between biovar II strains (erythromycin resistance) and the phylogenetic group B.12. Only B.12 strains had an A → C SNP at position 2059 in the three copies of the rrl gene. Introducing 2059C into an rrl gene of an erythromycin-susceptible F. tularensis strain resulted in resistance. An additional 1144 erythromycin-resistant strains were identified from the scientific literature, all of them from Eurasia. CONCLUSIONS Erythromycin resistance in F. tularensis is caused by an A2059C rrl gene mutation, which exhibits a strictly clonal inheritance pattern found only in phylogenetic group B.12. This group is an extremely successful clone, representing the most common type of F. tularensis throughout Eurasia.


WOS | 2015

Phylogeography of Francisella tularensis subspecies holarctica in Finland, 1993-2011

Susanna Sissonen; Heidi Rossow; Edvin Karlsson; Heidi Hemmilä; Heikki Henttonen; Marja Isomursu; Paula M. Kinnunen; Kirsti Pelkola; Sinikka Pelkonen; Eveliina Tarkka; Kerstin Myrtennäs; Simo Nikkari; Mats Forsman

Abstract Background: Finland repeatedly reports some of the highest incidences of tularaemia worldwide. To determine genetic diversity of the aetiologic agent of tularaemia, Francisella tularensis, a total of 76 samples from humans (n = 15) and animals (n = 61) were analysed. Methods: We used CanSNPs and canINDEL hydrolysis or TaqMan MGB probes for the analyses, either directly from the clinical tissue samples (n = 21) or from bacterial isolates (n = 55). Results: The genotypes of the strains were assigned to three previously described basal subspecies holarctica clades. The majority of strains (n = 67) were assigned to B.12, a clade reported to dominate in Scandinavia and Eastern Europe. A single strain was assigned to clade B.4, previously reported from North America, Europe and China. The remaining strains (n = 8) were members of clade B.6. Importantly, new diversity was discovered in clade B.6. We describe two newly designed TaqMan MGB probe assays for this new B.6 subclade B.70, and its previously identified sister clade B.11, a clade dominantly found in Western Europe. Conclusions: The high genetic diversity of F. tularensis subspecies holarctica present in Finland is consistent with previous findings in Sweden. The results suggest a northern and southern division of the B.6 subclade B.10, where B.11 predominates in Western and Central Europe and B.70 is found in Fennoscandia. Further research is required to define whether the vast diversity of genotypes found is related to different habitats or reservoir species, their different postglacial immigration routes to Fennoscandia, or dynamics of the reservoir species.


Microbial Genomics | 2016

Long-range dispersal moved Francisella tularensis into Western Europe from the East

Chinmay Kumar Dwibedi; Dawn N. Birdsell; Adrian Lärkeryd; Kerstin Myrtennäs; Caroline Öhrman; Elin Nilsson; Edvin Karlsson; Christian Hochhalter; Andrew Rivera; Sara Maltinsky; Brittany N. Bayer; Paul Keim; Holger C. Scholz; Herbert Tomaso; Matthias Wittwer; Christian Beuret; Nadia Schuerch; Paola Pilo; Marta Hernández Pérez; David Rodríguez-Lázaro; Raquel Escudero; Pedro Anda; Mats Forsman; David M. Wagner; Pär Larsson; Anders Johansson

For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.


eLife | 2017

Atrophin controls developmental signaling pathways via interactions with Trithorax-like

Kelvin Yeung; Ann Boija; Edvin Karlsson; Per-Henrik Holmqvist; Yonit Tsatskis; Ilaria Nisoli; Damian B. Yap; Alireza Lorzadeh; Michelle Moksa; Martin Hirst; Samuel Aparicio; Manolis Fanto; Per Stenberg; Mattias Mannervik; Helen McNeill

Mutations in human Atrophin1, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. Drosophila Atrophin (Atro) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro’s critical role in development and disease, relatively little is known about Atro’s binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. ChIP-seq identified 1300 potential direct targets of Atro including engrailed, and components of the Dpp and Notch signaling pathways. We show that Atro regulates Dpp and Notch signaling in larval imaginal discs, at least partially via regulation of thickveins and fringe. In addition, bioinformatics analyses, sequential ChIP and coimmunoprecipitation experiments reveal that Atro interacts with the Drosophila GAGA Factor, Trithorax-like (Trl), and they bind to the same loci simultaneously. Phenotypic analyses of Trl and Atro clones suggest that Atro is required to modulate the transcription activation by Trl in larval imaginal discs. Taken together, these data indicate that Atro is a major Trl cofactor that functions to moderate developmental gene transcription. DOI: http://dx.doi.org/10.7554/eLife.23084.001

Collaboration


Dive into the Edvin Karlsson's collaboration.

Top Co-Authors

Avatar

Mats Forsman

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

Kerstin Myrtennäs

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

Adrian Lärkeryd

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

Andreas Sjödin

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Öhrman

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

Mona Byström

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elin Nilsson

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

Pär Larsson

Swedish Defence Research Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge