Edward A. Berger
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward A. Berger.
Science | 1996
Yu Feng; Christopher C. Broder; Paul E. Kennedy; Edward A. Berger
A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy. This protein, designated “fusin,” is a putative G protein-coupled receptor with seven transmembrane segments. Recombinant fusin enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and HIV-1 infection. Antibodies to fusin blocked cell fusion and infection with normal CD4-positive human target cells. Fusin messenger RNA levels correlated with HIV-1 permissiveness in diverse human cell types. Fusin acted preferentially for T cell line-tropic isolates, in comparison to its activity with macrophage-tropic HIV-1 isolates.
Science | 1996
Ghalib Alkhatib; Christophe Combadiere; Christopher C. Broder; Yu Feng; Paul E. Kennedy; Philip M. Murphy; Edward A. Berger
Human immunodeficiency virus-type 1 (HIV-1) entry requires fusion cofactors on the CD4+ target cell. Fusin, a heterotrimeric GTP-binding protein (G protein)-coupled receptor, serves as a cofactor for T cell line-tropic isolates. The chemokines RANTES, MIP-1α, and MIP-1β, which suppress infection by macrophage-tropic isolates, selectively inhibited cell fusion mediated by the corresponding envelope glycoproteins (Envs). Recombinant CC CKR5, a G protein-coupled receptor for these chemokines, rendered CD4-expressing nonhuman cells fusion-competent preferentially with macrophage-tropic Envs. CC CKR5 messenger RNA was detected selectively in cell types susceptible to macrophage-tropic isolates. CC CKR5 is thus a fusion cofactor for macrophage-tropic HIV-1 strains.
Nature | 1998
Edward A. Berger; Robert W. Doms; Eva Maria Fenyö; Bette T. Korber; Dan R. Littman; John P. Moore; Quentin J. Sattentau; Hanneke Schuitemaker; Joseph Sodroski; Robin A. Weiss
The phenotype of HIV-1 isolates is defined by the cells in which they replicate in vitro, but these phenotypes can change in vivo with profound implications for viral transmission, pathogenesis and disease progression. Here we propose a new classification system based on co-receptor use, providing a more accurate description of viral phenotype than the present imprecise and often misleading classification schemes.
Cell | 1999
Fabio Santoro; Paul E. Kennedy; Giuseppe Locatelli; Mauro S. Malnati; Edward A. Berger; Paolo Lusso
Human herpesvirus 6 (HHV-6) is the etiologic agent of exanthema subitum, causes opportunistic infections in immunocompromised patients, and has been implicated in multiple sclerosis and in the progression of AIDS. Here, we show that the two major HHV-6 subgroups (A and B) use human CD46 as a cellular receptor. Downregulation of surface CD46 was documented during the course of HHV-6 infection. Both acute infection and cell fusion mediated by HHV-6 were specifically inhibited by a monoclonal antibody to CD46; fusion was also blocked by soluble CD46. Nonhuman cells that were resistant to HHV-6 fusion and entry became susceptible upon expression of recombinant human CD46. The use of a ubiquitous immunoregulatory receptor opens novel perspectives for understanding the tropism and pathogenicity of HHV-6.
Journal of Biological Chemistry | 1998
Christophe Combadière; Karl Salzwedel; Erica D. Smith; H. Lee Tiffany; Edward A. Berger; Philip M. Murphy
Fractalkine is a multimodular human leukocyte chemoattractant protein and a member of the chemokine superfamily. Unlike other human chemokines, the chemokine domain of fractalkine has three amino acids between two conserved cysteines, referred to as the CX 3C motif. Both plasma membrane-associated and shed forms of fractalkine have been identified. Here, we show that the recombinant 76-amino acid chemokine domain of fractalkine is a potent and highly specific chemotactic agonist at a human orphan receptor previously named V28 or alternatively CMKBRL1 (chemokine β receptor-like 1), which was shown previously to be expressed in neutrophils, monocytes, T lymphocytes, and several solid organs, including brain. CMKBRL1/V28 also functioned with CD4 as a coreceptor for the envelope protein from a primary isolate of HIV-1 in a cell-cell fusion assay, and fusion was potently and specifically inhibited by fractalkine. Thus CMKBRL1/V28 is a specific receptor for fractalkine, and we propose to rename it CX 3CR1 (CX 3C chemokine receptor 1), according to an accepted nomenclature system.
Immunity | 2003
David G. Brooks; Dean H. Hamer; Philip A. Arlen; Lianying Gao; Greg Bristol; Christina M. R. Kitchen; Edward A. Berger; Jerome A. Zack
Antiretroviral therapy is unable to eliminate HIV infection in a small, long-lived population of latently infected T cells, providing a source for renewed viral replication following cessation of therapy. Analysis of individual latently infected cells generated in the SCID-hu (Thy/Liv) mouse demonstrated no functional viral RNA produced in the latent state. Following reactivation viral expression was dramatically increased, rendering the infected cells susceptible to an anti-HIV immunotoxin. Treatment with the immunotoxin in conjunction with agents that activate virus expression without inducing cell division (IL-7 or the non-tumor-promoting phorbol ester prostratin) depleted the bulk of the latent reservoir and left uninfected cells able to respond to subsequent costimulation. We demonstrate that activation of latent virus is required for targeting by antiviral agents and provide the basis for future therapeutic strategies to eradicate the latent reservoir.
Journal of Virology | 2000
Barna Dey; Danica L. Lerner; Paolo Lusso; Michael R. Boyd; John H. Elder; Edward A. Berger
ABSTRACT Cyanovirin-N (CV-N) is a cyanobacterial protein with potent neutralizing activity against human immunodeficiency virus (HIV). CV-N has been shown to bind HIV type 1 (HIV-1) gp120 with high affinity; moreover, it blocks the envelope glycoprotein-mediated membrane fusion reaction associated with HIV-1 entry. However, the inhibitory mechanism(s) remains unclear. In this study, we show that CV-N blocked binding of gp120 to cell-associated CD4. Consistent with this, pretreatment of gp120 with CV-N inhibited soluble CD4 (sCD4)-dependent binding of gp120 to cell-associated CCR5. To investigate possible effects of CV-N at post-CD4 binding steps, we used an assay that measures sCD4 activation of the HIV-1 envelope glycoprotein for fusion with CCR5-expressing cells. CV-N displayed equivalently potent inhibitory effects when added before or after sCD4 activation, suggesting that CV-N also has blocking action at the level of gp120 interaction with coreceptor. This effect was shown not to be due to CV-N-induced coreceptor down-modulation after the CD4 binding step. The multiple activities against the HIV-1 envelope glycoprotein prompted us to examine other enveloped viruses. CV-N potently blocked infection by feline immunodeficiency virus, which utilizes the chemokine receptor CXCR4 as an entry receptor but is CD4 independent. CV-N also inhibited fusion and/or infection by human herpesvirus 6 and measles virus but not by vaccinia virus. Thus, CV-N has broad-spectrum antiviral activity, both for multiple steps in the HIV entry mechanism and for diverse enveloped viruses. This broad specificity has implications for potential clinical utility of CV-N.
Journal of Virology | 2000
Karl Salzwedel; Erica D. Smith; Barna Dey; Edward A. Berger
ABSTRACT We devised an experimental system to examine sequential events by which the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) interacts with CD4 and coreceptor to induce membrane fusion. Recombinant soluble CD4 (sCD4) activated fusion between effector cells expressing Env and target cells expressing coreceptor (CCR5 or CXCR4) but lacking CD4. sCD4-activated fusion was dose dependent, occurred comparably with two- and four-domain proteins, and demonstrated Env-coreceptor specificities parallel to those reported in conventional fusion and infectivity systems. Fusion activation occurred upon sCD4 preincubation and washing of the Env-expressing effector cells but not the coreceptor-bearing target cells, thereby demonstrating that sCD4 exerts its effects by acting on Env. These findings provide direct functional evidence for a sequential two-step model of Env-receptor interactions, whereby gp120 binds first to CD4 and becomes activated for subsequent functional interaction with coreceptor, leading to membrane fusion. We used the sCD4-activated system to explore neutralization by the anti-gp120 human monoclonal antibodies 17b and 48d. These antibodies reportedly bind conserved CD4-induced epitopes involved in coreceptor interactions but neutralize HIV-1 infection only weakly. We found that 17b and 48d had minimal effects in the standard cell fusion system using target cells expressing both CD4 and coreceptor but potently blocked sCD4-activated fusion with target cells expressing coreceptor alone. Both antibodies strongly inhibited sCD4-activated fusion by Envs from genetically diverse HIV-1 isolates. Thus, the sCD4-activated system reveals conserved Env-blocking epitopes that are masked in native Env and hence not readily detected by conventional systems.
Nature | 1997
Ghalib Alkhatib; Fang Liao; Edward A. Berger; Joshua M. Farber; Keith Peden
The identification last year of chemokine receptors as fusion co-factors for HIV-1 has contributed significantly towards understanding HIV transmission and AIDS pathogenesis (see ref. 7 for a review). Because the experimental infection of rhesus macaques with simian immunodeficiency virus (SIV) and the resulting development of an AIDS-like illness is the best animal model for HIV disease in humans, identifying SIV co-receptors analogous to those used by HIV has obvious importance. We now report that STRL33, a chemokine receptor-like orphan receptor expressed in activated human lymphocytes and acting as a fusion co-factor with envelope glycoproteins (Envs) from HIV-1 strains of diverse tropisms, is a co-receptor for SIV.
Science | 2006
Johnan A.R. Kaleeba; Edward A. Berger
Kaposis sarcoma–associated herpesvirus (KSHV, human herpesvirus 8) is the causative agent of Kaposis sarcoma and other lymphoproliferative syndromes often associated with HIV/AIDS. Functional complementary DNA selection for a receptor mediating KSHV cell fusion identified xCT, the 12-transmembrane light chain of the human cystine/glutamate exchange transporter system x –c. Expression of recombinant xCT rendered otherwise not susceptible target cells permissive for both KSHV cell fusion and virion entry. Antibodies against xCT blocked KSHV fusion and entry with naturally permissive target cells. KSHV target cell permissiveness correlated closely with endogenous expression of xCT messenger RNA and protein in diverse human and nonhuman cell types.