Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward A. Fon is active.

Publication


Featured researches published by Edward A. Fon.


Nature | 2014

Ubiquitin is phosphorylated by PINK1 to activate parkin

Fumika Koyano; Kei Okatsu; Hidetaka Kosako; Yasushi Tamura; Etsu Go; Mayumi Kimura; Yoko Kimura; Hikaru Tsuchiya; Hidehito Yoshihara; Takatsugu Hirokawa; Toshiya Endo; Edward A. Fon; Jean-François Trempe; Yasushi Saeki; Keiji Tanaka; Noriyuki Matsuda

PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7∼ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.


Nature Cell Biology | 2006

A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling

Lara Fallon; Catherine M.L. Bélanger; Amadou T. Corera; Maria Kontogiannea; Elsa Regan-Klapisz; Jarno Voortman; Michael Haber; Geneviève Rouleau; Thorhildur Thorarinsdottir; Alexis Brice; Paul M.P. van Bergen en Henegouwen; Edward A. Fon

Mutations in the parkin gene are responsible for a common familial form of Parkinsons disease. As parkin encodes an E3 ubiquitin ligase, defects in proteasome-mediated protein degradation are believed to have a central role in the pathogenesis of Parkinsons disease. Here, we report a novel role for parkin in a proteasome-independent ubiquitination pathway. We have identified a regulated interaction between parkin and Eps15, an adaptor protein that is involved in epidermal growth factor (EGF) receptor (EGFR) endocytosis and trafficking. Treatment of cells with EGF stimulates parkin binding to both Eps15 and the EGFR and promotes parkin-mediated ubiquitination of Eps15. Binding of the parkin ubiquitin-like (Ubl) domain to the Eps15 ubiquitin-interacting motifs (UIMs) is required for parkin-mediated Eps15 ubiquitination. Furthermore, EGFR endocytosis and degradation are accelerated in parkin-deficient cells, and EGFR signalling via the phosphoinositide 3-kinase (PI(3)K)–Akt pathway is reduced in parkin knockout mouse brain. We propose that by ubiquitinating Eps15, parkin interferes with the ability of the Eps15 UIMs to bind ubiquitinated EGFR, thereby delaying EGFR internalization and degradation, and promoting PI(3)K–Akt signalling. Considering the role of Akt in neuronal survival, our results have broad new implications for understanding the pathogenesis of Parkinsons disease.


Current Biology | 2012

A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes

Vincent Soubannier; Gian-Luca McLelland; Rodolfo Zunino; Emélie Braschi; Peter Rippstein; Edward A. Fon; Heidi M. McBride

Mitochondrial respiration relies on electron transport, an essential yet dangerous process in that it leads to the generation of reactive oxygen species (ROS). ROS can be neutralized within the mitochondria through enzymatic activity, yet the mechanism for steady-state removal of oxidized mitochondrial protein complexes and lipids is not well understood. We have previously characterized vesicular profiles budding from the mitochondria that carry selected cargo. At least one population of these mitochondria-derived vesicles (MDVs) targets the peroxisomes; however, the fate of the majority of MDVs was unclear. Here, we demonstrate that MDVs carry selected cargo to the lysosomes. Using a combination of confocal and electron microscopy, we observe MDVs in steady state and demonstrate that they are stimulated as an early response to oxidative stress, the extent of which is determined by the respiratory status of the mitochondria. Delivery to the lysosomes does not require mitochondrial depolarization and is independent of ATG5 and LC3, suggesting that vesicle delivery complements mitophagy. Consistent with this, ultrastructural analysis of MDV formation revealed Tom20-positive structures within the vesicles of multivesicular bodies. These data characterize a novel vesicle transport route between the mitochondria and lysosomes, providing insights into the basic mechanisms of mitochondrial quality control.


The EMBO Journal | 2014

Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control

Gian-Luca McLelland; Vincent Soubannier; Carol X. Q. Chen; Heidi M. McBride; Edward A. Fon

Mitochondrial dysfunction has long been associated with Parkinsons disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mitophagy and is triggered by the generation of oxidative stress from within mitochondria. Wild‐type but not PD‐linked mutant parkin supports the biogenesis of a population of mitochondria‐derived vesicles (MDVs), which bud off mitochondria and contain a specific repertoire of cargo proteins. These MDVs require PINK1 expression and ultimately target to lysosomes for degradation. We hypothesize that loss of this parkin‐ and PINK1‐dependent trafficking mechanism impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins leading, over time, to the mitochondrial dysfunction noted in PD.


The Journal of Neuroscience | 2002

Methamphetamine-Induced Degeneration of Dopaminergic Neurons Involves Autophagy and Upregulation of Dopamine Synthesis

Kristin E. Larsen; Edward A. Fon; Teresa G. Hastings; Robert H. Edwards; David Sulzer

Methamphetamine (METH) selectively injures the neurites of dopamine (DA) neurons, generally without inducing cell death. It has been proposed that METH-induced redistribution of DA from the vesicular storage pool to the cytoplasm, where DA can oxidize to produce quinones and additional reactive oxygen species, may account for this selective neurotoxicity. To test this hypothesis, we used mice heterozygous (+/−) or homozygous (−/−) for the brain vesicular monoamine uptake transporter VMAT2, which mediates the accumulation of cytosolic DA into synaptic vesicles. In postnatal ventral midbrain neuronal cultures derived from these mice, METH-induced degeneration of DA neurites and accumulation of oxyradicals, including metabolites of oxidized DA, varied inversely with VMAT2 expression. METH administration also promoted the synthesis of DA via upregulation of tyrosine hydroxylase activity, resulting in an elevation of cytosolic DA even in the absence of vesicular sequestration. Electron microscopy and fluorescent labeling confirmed that METH promoted the formation of autophagic granules, particularly in neuronal varicosities and, ultimately, within cell bodies of dopaminergic neurons. Therefore, we propose that METH neurotoxicity results from the induction of a specific cellular pathway that is activated when DA cannot be effectively sequestered in synaptic vesicles, thereby producing oxyradical stress, autophagy, and neurite degeneration.


EMBO Reports | 2012

Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment

Andrew W Greene; Karl Grenier; Miguel A Aguileta; Stephanie Muise; Rasoul Farazifard; M. Emdadul Haque; Heidi M. McBride; David S. Park; Edward A. Fon

Mutations in phosphatase and tensin homologue‐induced kinase 1 (PINK1) cause recessively inherited Parkinsons disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD‐linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA‐mediated interference (RNAi)‐based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin‐associated rhomboid‐like protease (PARL), m‐AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway.


Human Molecular Genetics | 2010

Loss of the Parkinson’s Disease-linked gene DJ-1 perturbs mitochondrial dynamics

Isabella Irrcher; Hossein Aleyasin; E.L. Seifert; Sarah J. Hewitt; S. Chhabra; Maryam Phillips; Anne Kathrin Lutz; Maxime W.C. Rousseaux; L. Bevilacqua; A. Jahani-Asl; Steve Callaghan; J.G. MacLaurin; Konstanze F. Winklhofer; Patrizia Rizzu; P. Rippstein; Raymond H. Kim; Carol X. Q. Chen; Edward A. Fon; Ruth S. Slack; M.E. Harper; H.M. McBride; Tak W. Mak; David S. Park

Growing evidence highlights a role for mitochondrial dysfunction and oxidative stress as underlying contributors to Parkinsons disease (PD) pathogenesis. DJ-1 (PARK7) is a recently identified recessive familial PD gene. Its loss leads to increased susceptibility of neurons to oxidative stress and death. However, its mechanism of action is not fully understood. Presently, we report that DJ-1 deficiency in cell lines, cultured neurons, mouse brain and lymphoblast cells derived from DJ-1 patients display aberrant mitochondrial morphology. We also show that these DJ-1-dependent mitochondrial defects contribute to oxidative stress-induced sensitivity to cell death since reversal of this fragmented mitochondrial phenotype abrogates neuronal cell death. Reactive oxygen species (ROS) appear to play a critical role in the observed defects, as ROS scavengers rescue the phenotype and mitochondria isolated from DJ-1 deficient animals produce more ROS compared with control. Importantly, the aberrant mitochondrial phenotype can be rescued by the expression of Pink1 and Parkin, two PD-linked genes involved in regulating mitochondrial dynamics and quality control. Finally, we show that DJ-1 deficiency leads to altered autophagy in murine and human cells. Our findings define a mechanism by which the DJ-1-dependent mitochondrial defects contribute to the increased sensitivity to oxidative stress-induced cell death that has been previously reported.


Science | 2013

Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation

Jean-François Trempe; Véronique Sauvé; Karl Grenier; Marjan Seirafi; Matthew Y. Tang; Marie Ménade; Sameer Al-Abdul-Wahid; Jonathan Krett; Kathy Wong; Guennadi Kozlov; Bhushan Nagar; Edward A. Fon; Kalle Gehring

Parkin Enhanced? Inactivation of parkin, an E3 ubiquitin ligase, is responsible for a familial form of Parkinsons disease and may be involved in sporadic forms as well. Trempe et al. (p. 1451, published online 9 May) present the crystal structure of full-length parkin in an autoinhibited configuration. Guided by the structure, mutations were designed that activated parkin both in vitro and in cells. Because parkin is neuroprotective, the structure provides a framework for enhancing parkin function as a therapeutic strategy in Parkinsons disease. The complete structure of a protein linked to Parkinson’s disease suggests how to activate it. Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson’s disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys431 in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.


The EMBO Journal | 2014

A new pathway for mitochondrial quality control: mitochondrial-derived vesicles

Ayumu Sugiura; Gian-Luca McLelland; Edward A. Fon; Heidi M. McBride

The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial‐derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinsons disease‐associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology.


Trends in Biochemical Sciences | 2015

Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease

Brent J. Ryan; Selim Hoek; Edward A. Fon; Richard Wade-Martins

Parkinsons disease (PD) is a progressive neurodegenerative disorder characterised by the preferential loss of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuronal susceptibility in PD and is a feature of both familial and sporadic disease, as well as in toxin-induced Parkinsonism. Recently, the mechanisms by which PD-associated mitochondrial proteins phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-induced putative kinase 1 (PINK1) and parkin function and induce neurodegeneration have been identified. In addition, increasing evidence implicates other PD-associated proteins such as α-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) in mitochondrial dysfunction in genetic cases of PD with the potential for a large functional overlap with sporadic disease. This review highlights how recent advances in understanding familial PD-associated proteins have identified novel mechanisms and therapeutic strategies for addressing mitochondrial dysfunction in PD.

Collaboration


Dive into the Edward A. Fon's collaboration.

Top Co-Authors

Avatar

Thomas M. Durcan

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Gian-Luca McLelland

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amadou T. Corera

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Y. Tang

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi M. McBride

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge