Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward A. Pankey is active.

Publication


Featured researches published by Edward A. Pankey.


Critical Care Research and Practice | 2012

Stimulators and Activators of Soluble Guanylate Cyclase: Review and Potential Therapeutic Indications

Bobby D. Nossaman; Edward A. Pankey; Philip J. Kadowitz

The heme-protein soluble guanylyl cyclase (sGC) is the intracellular receptor for nitric oxide (NO). sGC is a heterodimeric enzyme with α and β subunits and contains a heme moiety essential for binding of NO and activation of the enzyme. Stimulation of sGC mediates physiologic responses including smooth muscle relaxation, inhibition of inflammation, and thrombosis. In pathophysiologic states, NO formation and bioavailability can be impaired by oxidative stress and that tolerance to NO donors develops with continuous use. Two classes of compounds have been developed that can directly activate sGC and increase cGMP formation in pathophysiologic conditions when NO formation and bioavailability are impaired or when NO tolerance has developed. In this report, we review current information on the pharmacology of heme-dependent stimulators and heme-independent activators of sGC in animal and in early clinical studies and the potential role these compounds may have in the management of cardiovascular disease.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Mitochondrial aldehyde dehydrogenase mediates vasodilator responses of glyceryl trinitrate and sodium nitrite in the pulmonary vascular bed of the rat

Adeleke M. Badejo; Chris Hodnette; Jasdeep S. Dhaliwal; David B. Casey; Edward A. Pankey; Subramanyam N. Murthy; Bobby D. Nossaman; Albert L. Hyman; Philip J. Kadowitz

It has been reported that mitochondrial aldehyde dehydrogenase (ALDH2) catalyzes the formation of glyceryl dinitrate and inorganic nitrite from glyceryl trinitrate (GTN), leading to an increase in cGMP and vasodilation in the coronary and systemic vascular beds. However, the role of nitric oxide (NO) formed from nitrite in mediating the response to GTN in the pulmonary vascular bed is uncertain. The purpose of the present study was to determine if nitrite plays a role in mediating vasodilator responses to GTN. In this study, intravenous injections of GTN and sodium nitrite decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressure under baseline and elevated tone conditions and decreases in systemic arterial pressure in response to GTN and sodium nitrite were attenuated by cyanamide, an ALDH2 inhibitor, whereas responses to the NO donor, sodium nitroprusside (SNP), were not altered. The decreases in pulmonary and systemic arterial pressure in response to GTN and SNP were not altered by allopurinol, an inhibitor of xanthine oxidoreductase, whereas responses to sodium nitrite were attenuated. GTN was approximately 1,000-fold more potent than sodium nitrite in decreasing pulmonary and systemic arterial pressures. These results suggest that ALDH2 plays an important role in the bioactivation of GTN and nitrite in the pulmonary and systemic vascular beds and that the reduction of nitrite to vasoactive NO does not play an important role in mediating vasodilator responses to GTN in the intact chest rat.


American Journal of Physiology-heart and Circulatory Physiology | 2013

The sGC activator BAY 60-2770 has potent erectile activity in the rat

George F. Lasker; Edward A. Pankey; Terrence J. Frink; Jonathan R. Zeitzer; Korey Walter; Philip J. Kadowitz

Nitric oxide (NO) is the principal mediator of penile erection, and soluble guanylate cyclase (sGC) is the receptor for NO. In pathophysiological conditions when sGC is inactivated and not responsive to NO or sGC stimulators a new class of agents called sGC activators increase the activity of NO-insensitive sGC and produce erection. The aim of this study was to investigate erectile responses to BAY 60-2770, a sGC activator, under physiological and pathophysiological conditions. In the present study increases in intracavernosal pressure (ICP) in response to intracavernosal (ic) injections of BAY 60-2770 were investigated under baseline conditions, when sGC was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), when nitric oxide synthase (NOS) was inhibited by N-nitro-L-arginine methyl ester (L-NAME), and after cavernosal nerve crush injury. Under baseline conditions ic injections of BAY 60-2770 increase ICP, ICP/mean arterial pressure (MAP), and area under the ICP curve (AUC) and produce small decreases in MAP at the highest doses studied. BAY 60-2770 was very potent in its ability to induce erection and responses to BAY 60-2770 were enhanced by ODQ which attenuates erectile responses to sodium nitroprusside (SNP), diethylamine NONOate (DEA/NO), and cavernosal nerve stimulation. Responses to BAY 60-2770 were not altered by L-NAME or cavernosal nerve crush injury. These data indicate that BAY 60-2770 has potent erectile activity that is enhanced by ODQ and show that responses to BAY 60-2770 are not attenuated by NOS inhibition or cavernosal nerve injury. These results suggest that BAY 60-2770 would be effective in the treatment of erectile dysfunction when NO bioavailability is reduced, after pelvic nerve injury, and when sGC is oxidized.


Nitric Oxide | 2012

Effect of Chronic Sodium Nitrite Therapy on Monocrotaline-Induced Pulmonary Hypertension

Edward A. Pankey; Adeleke M. Badejo; David B. Casey; George F. Lasker; Russel A. Riehl; Subramanyam N. Murthy; Bobby D. Nossaman; Philip J. Kadowitz

Pulmonary hypertension (PH) is a rare disorder that without treatment is progressive and often fatal within 3 years. The treatment of PH involves the use of a diverse group of drugs and lung transplantation. Although nitrite was once thought to be an inactive metabolite of endothelial-derived nitric oxide (NO), there is increasing evidence that nitrite may be useful in the treatment of PH, but the mechanism by which nitrite exerts its beneficial effect remains uncertain. The purpose of this study was to investigate the effect of chronic sodium nitrite treatment in a PH model in the rat. Following induction of PH with a single injection of monocrotaline, 60 mg; daily ip injections of sodium nitrite (3mg/kg) starting on day 14 and continuing for 21 days, resulted in a significantly lower pulmonary arterial pressure on day 35 when compared to values in untreated animals with monocrotaline-induced PH. In monocrotaline-treated rats, daily treatment with ip nitrite injections for 21 days decreased right ventricular mass and pathologic changes in small pulmonary arteries. Nitrite therapy did not change systemic arterial pressure or cardiac output when values were measured on day 35. The decreases in pulmonary arterial pressure in response to iv injections of sodium nitroprusside, sodium nitrite, and BAY 41-8543 were not different in rats with monocrotaline-induced pulmonary hypertension and rats with chronic nitrite therapy when compared to responses in animals in which pulmonary arterial pressure was increased with U46619. These findings are consistent with the hypothesis that the mechanisms that convert nitrite to vasoactive NO, activate soluble guanylyl cyclase and mediate the vasodilator response to NO or an NO derivative are not impaired. The present data are consistent with the results of a previous study in monocrotaline-induced PH in which systemic arterial pressure and cardiac output were not evaluated and are consistent with the hypothesis that nitrite is effective in the treatment of monocrotaline-induced PH in the rodent.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase stimulator, BAY 41-8543, are modulated by nitric oxide

Adeleke M. Badejo; Vaughn E. Nossaman; Edward A. Pankey; Manish Bhartiya; Chandrika B. Kannadka; Subramanyam N. Murthy; Bobby D. Nossaman; Philip J. Kadowitz

BAY 41-8543 is a nitric oxide (NO)-independent stimulator of soluble guanylyl cyclase (sGC). Responses to intravenous injections of BAY 41-8543 were investigated under baseline and elevated tone conditions and when NO synthase (NOS) was inhibited with N(ω)-nitro-L-arginine methyl ester (L-NAME). Under baseline conditions, intravenous injections of BAY 41-8543 caused small decreases in pulmonary arterial pressure, larger decreases in systemic arterial pressure, and increases in cardiac output. When pulmonary arterial pressure was increased to ∼30 mmHg with an intravenous infusion of U-46619, intravenous injections of BAY 41-8543 produced larger dose-dependent decreases in pulmonary arterial pressure, and the relative decreases in pulmonary and systemic arterial pressure in response to the sGC stimulator were similar. Treatment with L-NAME markedly decreased responses to BAY 41-8543 when pulmonary arterial pressure was increased to similar values (∼30 mmHg) in U-46619-infused and in U-46619-infused plus L-NAME-treated animals. The intravenous injection of a small dose of sodium nitroprusside (SNP) when combined with BAY 41-8543 enhanced pulmonary and systemic vasodilator responses to the sGC stimulator in L-NAME-treated animals. The present results indicate that BAY 41-8543 has similar vasodilator activity in the systemic and pulmonary vascular beds when pulmonary vasoconstrictor tone is increased with U-46619. These results demonstrate that pulmonary and systemic vasodilator responses to BAY 41-8543 are significantly attenuated when NOS is inhibited by L-NAME and show that vasodilator responses to BAY 41-8543 are enhanced when combined with a small dose of SNP in L-NAME-treated animals. The present results are consistent with the concept that pulmonary and systemic vasodilator responses to the sGC stimulator are NO-independent; however, the vasodilator activity of the compound is greatly diminished when endogenous NO production is inhibited with L-NAME. These data show that BAY 41-8543 has similar vasodilator activity in the pulmonary and systemic vascular beds in the rat.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Environmentally persistent free radicals decrease cardiac function and increase pulmonary artery pressure

Sarah Mahne; Gin Chuang; Edward A. Pankey; Lucy W. Kiruri; Philip J. Kadowitz; Barry Dellinger; Kurt J. Varner

Epidemiological studies have consistently linked inhalation of particulate matter (PM) to increased cardiac morbidity and mortality, especially in at risk populations. However, few studies have examined the effect of PM on baseline cardiac function in otherwise healthy individuals. In addition, airborne PM contain environmentally persistent free radicals (EPFR) capable of redox cycling in biological systems. The purpose of this study was to determine whether nose-only inhalation of EPFRs (20 min/day for 7 days) could decrease baseline left ventricular function in healthy male Sprague-Dawley rats. The model EPFR tested was 1,2-dichlorobenzene chemisorbed to 0.2-μm-diameter silica/CuO particles at 230°C (DCB230). Inhalation of vehicle or silica particles served as controls. Twenty-four hours after the last exposure, rats were anesthetized (isoflurane) and ventilated (3 l/min), and left ventricular function was assessed using pressure-volume catheters. Compared with controls, inhalation of DCB230 significantly decreased baseline stroke volume, cardiac output, and stroke work. End-diastolic volume and end-diastolic pressure were also significantly reduced; however, ventricular contractility and relaxation were not changed. DCB230 also significantly increased pulmonary arterial pressure and produced hyperplasia in small pulmonary arteries. Plasma levels of C-reactive protein were significantly increased by exposure to DCB230, as were levels of heme oxygenase-1 and SOD2 in the left ventricle. Together, these data show that inhalation of EPFRs, but not silica particles, decreases baseline cardiac function in healthy rats by decreasing cardiac filling, secondary to increased pulmonary resistance. These EPFRs also produced systemic inflammation and increased oxidative stress markers in the left ventricle.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat.

Daniel Yoo; Ryan C. Jupiter; Edward A. Pankey; Vishwaradh G. Reddy; Justin A. Edward; Kevin W. Swan; Taylor C. Peak; Ricardo Mostany; Philip J. Kadowitz

Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03-0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, N(w)-nitro-L-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat.


Urology | 2013

The selective Rho-kinase inhibitor azaindole-1 has long-lasting erectile activity in the rat.

George F. Lasker; Edward A. Pankey; Alexander V. Allain; Subramanyam N. Murthy; Johannes-Peter Stasch; Philip J. Kadowitz

OBJECTIVE To investigate the effects of the selective Rho-associated protein kinase (ROCK) inhibitor azaindole-1 on erectile function under physiologic and pathophysiologic conditions in the rat. METHODS The effect of intracavernosal (i.c.) injections of azaindole-1 on change in intracavernous pressure (ICP), ICP/mean arterial pressure (MAP), area under the curve (AUC), and response duration were investigated in the anesthetized rat under control conditions and when nonadrenergic noncholinergic neurotransmission and cholinergic function or soluble guanylyl cyclase (sGC) were inhibited or after cavernosal nerve crush injury. RESULTS The i.c. injections of azaindole-1 produced dose-related increases in ICP/MAP and AUC that were long-lasting at the highest doses studied compared with the prototypical ROCK inhibitor fasudil. Erectile responses were not altered by 7-nitroindazole and atropine in doses that reduced the response to cavernosal nerve stimulation by 86%, indicating that they were independent of NO release by cavernosal nerves or activation of muscarinic receptors in the corpora cavernosa. Erectile responses to azaindole-1 were not altered by the sGC inhibitor ODQ in a dose that attenuated responses to the NO donor sodium nitroprusside, indicating that they were independent of an action on sGC. The erectile response to i.c. injections of azaindole-1 or Y-27632, which was reported to be NO/cyclic guanosine monophosphate-dependent, was not attenuated after cavernosal nerve crush injury. CONCLUSION The present studies indicate that azaindole-1 has long-lasting erectile activity that is independent of NO release, muscarinic receptor, or sGC activation or the integrity of the cavernosal nerves.


Physiology | 2013

Modulation of Soluble Guanylate Cyclase for the Treatment of Erectile Dysfunction

George F. Lasker; Edward A. Pankey; Philip J. Kadowitz

Nitric oxide (NO) is the principal mediator of penile erection, and PDE-5 inhibitors are the first-line agents used to treat erectile dysfunction (ED). When NO formation or bioavailability is decreased by oxidative stress and PDE-5 inhibitors are no longer effective, a new class of agents called soluble guanylate cyclase (sGC) stimulators like BAY 41-8543 will induce erection. sGC stimulators bind to the normally reduced, NO-sensitive form of sGC to increase cGMP formation and promote erection. The sGC stimulators produce normal erectile responses when NO formation is inhibited and the nerves innervating the corpora cavernosa are damaged. However, with severe oxidative stress, the heme iron on sGC can be oxidized, rendering the enzyme unresponsive to NO or sGC stimulators. In this pathophysiological situation, another newly developed class of agents called sGC activators can increase the catalytic activity of the oxidized enzyme, increase cGMP formation, and promote erection. The use of newer agents that stimulate or activate sGC to promote erection and treat ED is discussed in this brief review article.


Canadian Journal of Physiology and Pharmacology | 2012

The Rho kinase inhibitor azaindole-1 has long-acting vasodilator activity in the pulmonary vascular bed of the intact chest rat.

Edward A. Pankey; Ryuk J. Byun; William B. Smith; Manish Bhartiya; Franklin R. Bueno; Adeleke M. Badejo; Johannes-Peter Stasch; Subramanyam N. Murthy; Bobby D. Nossaman; Philip J. Kadowitz

Responses to a selective azaindole-based Rho kinase (ROCK) inhibitor (azaindole-1) were investigated in the rat. Intravenous injections of azaindole-1 (10-300 µg/kg), produced small decreases in pulmonary arterial pressure and larger decreases in systemic arterial pressure without changing cardiac output. Responses to azaindole-1 were slow in onset and long in duration. When baseline pulmonary vascular tone was increased with U46619 or L-NAME, the decreases in pulmonary arterial pressure in response to the ROCK inhibitor were increased. The ROCK inhibitor attenuated the increase in pulmonary arterial pressure in response to ventilatory hypoxia. Azaindole-1 decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. These results show that azaindole-1 has significant vasodilator activity in the pulmonary and systemic vascular beds and that responses are larger, slower in onset, and longer in duration when compared with the prototypical agent fasudil. Azaindole-1 reversed hypoxic pulmonary vasoconstriction and decreased pulmonary and systemic arterial pressures in a similar manner in rats with monocrotaline-induced pulmonary hypertension. These data suggest that ROCK is involved in regulating baseline tone in the pulmonary and systemic vascular beds, and that ROCK inhibition will promote vasodilation when tone is increased by diverse stimuli including treatment with monocrotaline.

Collaboration


Dive into the Edward A. Pankey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge