Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward Avezov is active.

Publication


Featured researches published by Edward Avezov.


The New England Journal of Medicine | 2013

Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

Jyoti Nangalia; Gunes Gundem; Edward Avezov; Jingjin Li; Karoline Kollmann; Athar Aziz; Jonathan Hinton; Inigo Martincorena; P. Van Loo; Paola Guglielmelli; Patrick Tarpey; Keiran Raine; Stuart McLaren; M. Bianchi; Yvonne Silber; D. Dimitropoulou; David Bloxham; Laura Mudie; Mark Maddison; Ben Robinson; Clodagh Keohane; Cathy MacLean; Katherine L. Hill; Kim H. Orchard; Sudhir Tauro; Mel Greaves; David G. Bowen; David Ron; Elli Papaemmanuil

BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with nonmutated JAK2. (Funded by the Kay Kendall Leukaemia Fund and others.).


Journal of Cell Biology | 2013

Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox.

Edward Avezov; Benedict C. S. Cross; Gabriele S. Kaminski Schierle; Mikael Winters; Heather P. Harding; Eduardo Pinho Melo; Clemens F. Kaminski; David Ron

Fluorescent lifetime imaging of an ER-tuned redox-responsive probe revealed an unanticipated stability of ER thiol redox to fluctuations in unfolded protein load, in contrast with sensitivity to lumenal calcium.


eLife | 2014

Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants

Satoshi Tsunoda; Edward Avezov; Alisa Zyryanova; Tasuku Konno; Leonardo Mendes-Silva; Eduardo P. Melo; Heather P. Harding; David Ron

Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1CtoS purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER. DOI: http://dx.doi.org/10.7554/eLife.03421.001


Journal of Cell Biology | 2015

ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding

Tasuku Konno; Eduardo P. Melo; Carlos Lopes; Ilir Mehmeti; Sigurd Lenzen; David Ron; Edward Avezov

Tracking the kinetics of equilibration of H2O2 between compartments reveals unexpected isolation of the endoplasmic reticulum and hints at a hitherto unsuspected local source of peroxide.


eLife | 2015

Physiological modulation of BiP activity by trans-protomer engagement of the interdomain linker

Steffen Preissler; Joseph E. Chambers; Ana Crespillo-Casado; Edward Avezov; Elena Miranda; J. Pérez; Linda M. Hendershot; Heather P. Harding; David Ron

DnaK/Hsp70 chaperones form oligomers of poorly understood structure and functional significance. Site-specific proteolysis and crosslinking were used to probe the architecture of oligomers formed by the endoplasmic reticulum (ER) Hsp70, BiP. These were found to consist of adjacent protomers engaging the interdomain linker of one molecule in the substrate binding site of another, attenuating the chaperone function of oligomeric BiP. Native gel electrophoresis revealed a rapidly-modulated reciprocal relationship between the burden of unfolded proteins and BiP oligomers and slower equilibration between oligomers and inactive, covalently-modified BiP. Lumenal ER calcium depletion caused rapid oligomerization of mammalian BiP and a coincidental diminution in substrate binding, pointing to the relative inertness of the oligomers. Thus, equilibration between inactive oligomers and active monomeric BiP is poised to buffer fluctuations in ER unfolded protein load on a rapid timescale attainable neither by inter-conversion of active and covalently-modified BiP nor by the conventional unfolded protein response. DOI: http://dx.doi.org/10.7554/eLife.08961.001


Bioscience Reports | 2014

Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm.

Pawan Gulati; Edward Avezov; Marcella Ma; Robin Antrobus; Paul J. Lehner; Stephen O'Rahilly; Giles S. H. Yeo

SNPs (single nucleotide polymorphisms) on a chromosome 16 locus encompassing FTO, as well as IRX3, 5, 6, FTM and FTL are robustly associated with human obesity. FTO catalyses the Fe(II)- and 2OG-dependent demethylation of RNA and is an AA (amino acid) sensor that couples AA levels to mTORC1 (mammalian target of rapamycin complex 1) signalling, thereby playing a key role in regulating growth and translation. However, the cellular compartment in which FTO primarily resides to perform its biochemical role is unclear. Here, we undertake live cell imaging of GFP (green fluorescent protein)-FTO, and demonstrate that FTO resides in both the nucleus and cytoplasm. We show using ‘FLIP’ (fluorescence loss in photobleaching) that a mobile FTO fraction shuttles between both compartments. We performed a proteomic study and identified XPO2 (Exportin 2), one of a family of proteins that mediates the shuttling of proteins between the nucleus and the cytoplasm, as a binding partner of FTO. Finally, using deletion studies, we show that the N-terminus of FTO is required for its ability to shuttle between the nucleus and cytoplasm. In conclusion, FTO is present in both the nucleus and cytoplasm, with a mobile fraction that shuttles between both cellular compartments, possibly by interaction with XPO2.


Biophysical Journal | 2015

A Method to Quantify FRET Stoichiometry with Phasor Plot Analysis and Acceptor Lifetime Ingrowth

Weiyue Chen; Edward Avezov; Simon Schlachter; Fabrice Gielen; Romain F. Laine; Heather P. Harding; Florian Hollfelder; David Ron; Clemens F. Kaminski

FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.


Free Radical Biology and Medicine | 2017

ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E β-cells against lipotoxicity by improving the ER antioxidative capacity

Ilir Mehmeti; Stephan Lortz; Edward Avezov; Anne Jörns; Sigurd Lenzen

Increased circulating levels of saturated fatty acids (FFAs) and glucose are considered to be major mediators of β-cell dysfunction and death in T2DM. Although it has been proposed that endoplasmic reticulum (ER) and oxidative stress play a crucial role in gluco/lipotoxicity, their interplay and relative contribution to β-cell dysfunction and apoptosis has not been fully elucidated. In addition it is still unclear how palmitate - the physiologically most abundant long-chain saturated FFA - elicits ER stress and which immediate signals commit β-cells to apoptosis. To study the underlying mechanisms of palmitate-mediated ER stress and β-cell toxicity, we exploited the observation that the recently described ER-resident GPx7 and GPx8 are not expressed in rat β-cells. Expression of GPx7 or GPx8 attenuated FFAs-mediated H2O2 generation, ER stress, and apoptosis induction. These results could be confirmed by a H2O2-specific inactivating ER catalase, indicating that accumulation of H2O2 in the ER lumen is critical in FFA-induced ER stress. Furthermore, neither the expression of GPx7 nor of GPx8 increased insulin content or facilitated disulfide bond formation in insulin-secreting INS-1E cells. Hence, reduction of H2O2 by ER-GPx isoforms is not rate-limiting in oxidative protein folding in rat β-cells. These data suggest that FFA-mediated ER stress is partially dependent on oxidative stress and selective expression of GPx7 or GPx8 improves the ER antioxidative capacity of rat β-cells without compromising insulin production and the oxidative protein folding machinery.


BMC Biology | 2017

TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H 2 O 2

Eduardo Pinho Melo; Carlos Lopes; Peter Gollwitzer; Stephan Lortz; Sigurd Lenzen; Ilir Mehmeti; Clemens F. Kaminski; David Ron; Edward Avezov

BackgroundThe fate of hydrogen peroxide (H2O2) in the endoplasmic reticulum (ER) has been inferred indirectly from the activity of ER-localized thiol oxidases and peroxiredoxins, in vitro, and the consequences of their genetic manipulation, in vivo. Over the years hints have suggested that glutathione, puzzlingly abundant in the ER lumen, might have a role in reducing the heavy burden of H2O2 produced by the luminal enzymatic machinery for disulfide bond formation. However, limitations in existing organelle-targeted H2O2 probes have rendered them inert in the thiol-oxidizing ER, precluding experimental follow-up of glutathione’s role in ER H2O2 metabolism.ResultsHere we report on the development of TriPer, a vital optical probe sensitive to changes in the concentration of H2O2 in the thiol-oxidizing environment of the ER. Consistent with the hypothesized contribution of oxidative protein folding to H2O2 production, ER-localized TriPer detected an increase in the luminal H2O2 signal upon induction of pro-insulin (a disulfide-bonded protein of pancreatic β-cells), which was attenuated by the ectopic expression of catalase in the ER lumen. Interfering with glutathione production in the cytosol by buthionine sulfoximine (BSO) or enhancing its localized destruction by expression of the glutathione-degrading enzyme ChaC1 in the lumen of the ER further enhanced the luminal H2O2 signal and eroded β-cell viability.ConclusionsA tri-cysteine system with a single peroxidatic thiol enables H2O2 detection in oxidizing milieux such as that of the ER. Tracking ER H2O2 in live pancreatic β-cells points to a role for glutathione in H2O2 turnover.


ACS Nano | 2018

An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles

Joseph E. Chambers; Markéta Kubánková; Roland G. Huber; Ismeal López-Duarte; Edward Avezov; Peter J. Bond; Stefan J. Marciniak; Marina K. Kuimova

Microscopic viscosity (microviscosity) is a key determinant of diffusion in the cell and defines the rate of biological processes occurring at the nanoscale, including enzyme-driven metabolism and protein folding. Here we establish a rotor-based organelle viscosity imaging (ROVI) methodology that enables real-time quantitative mapping of cell microviscosity. This approach uses environment-sensitive dyes termed molecular rotors, covalently linked to genetically encoded probes to provide compartment-specific microviscosity measurements via fluorescence lifetime imaging. ROVI visualized spatial and temporal dynamics of microviscosity with suborganellar resolution, reporting on a microviscosity difference of nearly an order of magnitude between subcellular compartments. In the mitochondrial matrix, ROVI revealed several striking findings: a broad heterogeneity of microviscosity among individual mitochondria, unparalleled resilience to osmotic stress, and real-time changes in microviscosity during mitochondrial depolarization. These findings demonstrate the use of ROVI to explore the biophysical mechanisms underlying cell biological processes.

Collaboration


Dive into the Edward Avezov's collaboration.

Top Co-Authors

Avatar

David Ron

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo P. Melo

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar

Ilir Mehmeti

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tasuku Konno

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Weiyue Chen

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Carlos Lopes

University of the Algarve

View shared research outputs
Researchain Logo
Decentralizing Knowledge