Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward Barry is active.

Publication


Featured researches published by Edward Barry.


Nature | 2012

Reconfigurable self-assembly through chiral control of interfacial tension

Thomas Gibaud; Edward Barry; Mark J. Zakhary; Mir Henglin; Andrew Ward; Yasheng Yang; Cristina Berciu; Rudolf Oldenbourg; Michael F. Hagan; Daniela Nicastro; Robert B. Meyer; Zvonimir Dogic

From determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors. Here we demonstrate a consequence of this geometric frustration that leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This suggests an analogy between chiral twist, which is expelled to the edges of two-dimensional membranes, and amphiphilic surfactants, which are expelled to oil–water interfaces. As with surfactants, chiral control of interfacial tension drives the formation of many polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ allows dynamical control of line tension, which powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials that can easily be moved, stretched, attached to one another and transformed between multiple conformational states, thus allowing precise assembly and nanosculpting of highly dynamical and designable materials with complex topologies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Entropy driven self-assembly of nonamphiphilic colloidal membranes

Edward Barry; Zvonimir Dogic

We demonstrate that homogeneous monodisperse rods in the presence of attractive interactions assemble into equilibrium 2D fluid-like membranes composed of a one-rod length thick monolayer of aligned rods. Unique features of our system allow us to simultaneously investigate properties of these membranes at both continuum and molecular lengthscales. Analysis of thermal fluctuations at continuum lengthscales yields the membranes’ lateral compressibility and bending rigidity and demonstrates that the properties of colloidal membranes are comparable to those of traditional lipid bilayers. Fluctuations at molecular lengthscales, in which single rods protrude from the membrane surface, are directly measured by comparing the positions of individual fluorescently labeled rods within a membrane to that of the membrane’s continuum conformation. As two membranes approach each other in suspension, protrusion fluctuations are suppressed leading to effective repulsive interactions. Motivated by these observations, we propose an entropic mechanism that explains the stability of colloidal membranes and offers a general design principle for the self-assembly of 2D nanostructured materials from rod-like molecules.


Soft Matter | 2009

A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length

Edward Barry; Daniel Beller; Zvonimir Dogic

We compare the phase behavior of a mutant filamentous virus, fd Y21M, to that of a conventional fd wild-type (wt). We find significantly different macroscopic phase behavior despite the only microscopic difference between the two viruses being in a single amino acid of the major coat protein pVIII. Compared to fd wt, the location of the isotropic–cholesteric phase transition for fd Y21M shifts to lower densities. This is attributable to a significant difference in the flexibility of the two viruses. The persistence length of fd wt is 2.8 ± 0.7 µm, whereas the persistence length of fd Y21M is 9.9 ± 1.6 µm. The large persistence length of fd Y21M makes it an essentially rigid rod, thus allowing for the first time a quantitative test of the Onsager theory for the isotropic–nematic phase transition. Even more striking, is the difference in the chiral phase behavior of the two viruses. Both viruses form cholesteric phases, with the fd wt forming a left-handed cholesteric helix, and the fd Y21M forming a right-handed one. At a given density, the magnitude of the cholesteric pitch between the two systems is different by fivefold. Using mixtures of the two viruses, we create a liquid crystalline system with a tunable control over its macroscopic chirality.


Physical Review Letters | 2006

Entropy-driven formation of a chiral liquid-crystalline phase of helical filaments

Edward Barry; Zach Hensel; Zvonimir Dogic; Michael Shribak; Rudolf Oldenbourg

We study the liquid-crystalline phase behavior of a concentrated suspension of helical flagella isolated from Salmonella typhimurium. Flagella are prepared with different polymorphic states, some of which have a pronounced helical character while others assume a rodlike shape. We show that the static phase behavior and dynamics of chiral helices are very different when compared to simpler achiral hard rods. With increasing concentration, helical flagella undergo an entropy-driven first order phase transition to a liquid-crystalline state having a novel chiral symmetry.


Journal of Nanobiotechnology | 2012

Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires

Jing C Zhou; Carissa M. Soto; Mu-San Chen; Michael A. Bruckman; Martin H. Moore; Edward Barry; Banahalli R. Ratna; Pehr E. Pehrsson; Bradley R Spies; Tammie S Confer

BackgroundIn the past decade spherical and rod-like viruses have been used for the design and synthesis of new kind of nanomaterials with unique chemical positioning, shape, and dimensions in the nanosize regime. Wild type and genetic engineered viruses have served as excellent templates and scaffolds for the synthesis of hybrid materials with unique properties imparted by the incorporation of biological and organic moieties and inorganic nanoparticles. Although great advances have been accomplished, still there is a broad interest in developing reaction conditions suitable for biological templates while not limiting the material property of the product.ResultsWe demonstrate the controlled synthesis of copper nanorods and nanowires by electroless deposition of Cu on three types of Pd-activated rod-like viruses. Our aqueous solution-based method is scalable and versatile for biotemplating, resulting in Cu-nanorods 24–46 nm in diameter as measured by transmission electron microscopy. Cu2+ was chemically reduced onto Pd activated tobacco mosaic virus, fd and M13 bacteriophages to produce a complete and uniform Cu coverage. The Cu coating was a combination of Cu0 and Cu2O as determined by X- ray photoelectron spectroscopy analysis. A capping agent, synthesized in house, was used to disperse Cu-nanorods in aqueous and organic solvents. Likewise, reactions were developed to produce Cu-nanowires by metallization of polyaniline-coated tobacco mosaic virus.ConclusionsSynthesis conditions described in the current work are scalable and amenable for biological templates. The synthesized structures preserve the dimensions and shape of the rod-like viruses utilized during the study. The current work opens the possibility of generating a variety of nanorods and nanowires of different lengths ranging from 300 nm to micron sizes. Such biological-based materials may find ample use in nanoelectronics, sensing, and cancer therapy.


Soft Matter | 2012

Self-assembly of 2D membranes from mixtures of hard rods and depleting polymers†

Yasheng Yang; Edward Barry; Zvonimir Dogic; Michael F. Hagan

We combine simulations and experiments to elucidate the molecular forces leading to the assembly of two dimensional membrane-like structures composed of a one rod-length thick monolayer of aligned rods from an immiscible suspension of hard rods and depleting polymers. Computer simulations predict that monolayer membranes are thermodynamically stable above a critical rod aspect ratio and below a critical depletion interaction length scale. Outside of these conditions alternative structures such as stacked smectic columns or nematic droplets are thermodynamically stable. These predictions are confirmed by subsequent experiments using a model system of virus rod-like molecules and non-adsorbing polymer. Our work demonstrates that collective molecular protrusion fluctuations alone are sufficient to stabilize membranes composed of homogenous rods with simple excluded volume interactions.


Journal of Physical Chemistry B | 2009

Direct Measurement of the Twist Penetration Length in a Single Smectic A Layer of Colloidal Virus Particles

Edward Barry; Zvonimir Dogic; Robert B. Meyer; Robert A. Pelcovits; Rudolf Oldenbourg

In the 1970s, deGennes discussed the fundamental geometry of smectic liquid crystals and established an analogy between the smectic A phase and superconductors. It follows that smectic layers expel twist deformations in the same way that superconductors expel magnetic field. We make a direct observation of the penetration of twist at the edge of a single isolated smectic A layer composed of chiral fd virus particles subjected to a depletion interaction. Using the LC-PolScope, we make quantitative measurements of the spatial dependence of the birefringence due to molecular tilt near the layer edges. We match data to theory for the molecular tilt penetration profile and determine the twist penetration length for this system.


Nature Communications | 2014

Imprintable membranes from incomplete chiral coalescence

Mark J. Zakhary; Thomas Gibaud; C. Nadir Kaplan; Edward Barry; Rudolf Oldenbourg; Robert B. Meyer; Zvonimir Dogic

Coalescence is an essential phenomenon that governs the equilibrium behaviour in a variety of systems from intercellular transport to planetary formation. In this report, we study coalescence pathways of circularly shaped two-dimensional colloidal membranes, which are one rod-length-thick liquid-like monolayers of aligned rods. The chirality of the constituent rods leads to three atypical coalescence pathways that are not found in other simple or complex fluids. In particular, we characterize two pathways that do not proceed to completion but instead produce partially joined membranes connected by line defects-π-wall defects or alternating arrays of twisted bridges and pores. We elucidate the structure and energetics of these defects and ascribe their stability to a geometrical frustration inherently present in chiral colloidal membranes. Furthermore, we induce the coalescence process with optical forces, leading to a robust on-demand method for imprinting networks of channels and pores into colloidal membranes.


Archive | 2012

Aligned arrays of nanorods, and methods of making and using them

Edward Barry; Zvonimir Dogic; Michael F. Hagan; Yasheng Yang; Daniel Perlman


Bulletin of the American Physical Society | 2016

The Role of Ligand in the Mechanical Properties of Self-Assembled Nanoparticle Films

Sean Griesemer; Sean You; Pongsakorn Kanjanaboos; Edward Barry; Wei Bu; Stuart A. Rice; Binhua Lin

Collaboration


Dive into the Edward Barry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudolf Oldenbourg

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas Gibaud

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge