Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward C. Holmes is active.

Publication


Featured researches published by Edward C. Holmes.


Nature Reviews Genetics | 2008

Rates of evolutionary change in viruses: patterns and determinants

Siobain Duffy; Laura A. Shackelton; Edward C. Holmes

Understanding the factors that determine the rate at which genomes generate and fix mutations provides important insights into key evolutionary mechanisms. We review our current knowledge of the rates of mutation and substitution, as well as their determinants, in RNA viruses, DNA viruses and retroviruses. We show that the high rate of nucleotide substitution in RNA viruses is matched by some DNA viruses, suggesting that evolutionary rates in viruses are explained by diverse aspects of viral biology, such as genomic architecture and replication speed, and not simply by polymerase fidelity.


Nature Medicine | 2004

HIV evolution: CTL escape mutation and reversion after transmission

Alasdair Leslie; K. Pfafferott; P Chetty; Rika Draenert; M. M. Addo; Margaret E. Feeney; Yanhua Tang; Edward C. Holmes; Todd M. Allen; J G Prado; Marcus Altfeld; Christian Brander; C Dixon; D Ramduth; P Jeena; S A Thomas; A St John; Timothy Roach; B Kupfer; Graz Luzzi; Anne Edwards; G Taylor; H Lyall; Gareth Tudor-Williams; Vas Novelli; J Martinez-Picado; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder

Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.


Nature | 2008

The genomic and epidemiological dynamics of human influenza A virus.

Andrew Rambaut; Oliver G. Pybus; Martha I. Nelson; Cécile Viboud; Jeffery K. Taubenberger; Edward C. Holmes

The evolutionary interaction between influenza A virus and the human immune system, manifest as ‘antigenic drift’ of the viral haemagglutinin, is one of the best described patterns in molecular evolution. However, little is known about the genome-scale evolutionary dynamics of this pathogen. Similarly, how genomic processes relate to global influenza epidemiology, in which the A/H3N2 and A/H1N1 subtypes co-circulate, is poorly understood. Here through an analysis of 1,302 complete viral genomes sampled from temperate populations in both hemispheres, we show that the genomic evolution of influenza A virus is characterized by a complex interplay between frequent reassortment and periodic selective sweeps. The A/H3N2 and A/H1N1 subtypes exhibit different evolutionary dynamics, with diverse lineages circulating in A/H1N1, indicative of weaker antigenic drift. These results suggest a sink–source model of viral ecology in which new lineages are seeded from a persistent influenza reservoir, which we hypothesize to be located in the tropics, to sink populations in temperate regions.


PLOS Pathogens | 2013

New World Bats Harbor Diverse Influenza A Viruses

Suxiang Tong; Xueyong Zhu; Yan Li; Mang Shi; Jing Zhang; Melissa Bourgeois; Hua Yang; Xianfeng Chen; Sergio Recuenco; Jorge Gomez; Li-Mei Chen; Adam Johnson; Ying Tao; Cyrille Dreyfus; Wenli Yu; Ryan McBride; Paul J. Carney; Amy T. Gilbert; Jessie Chang; Zhu Guo; Charles T. Davis; James C. Paulson; James Stevens; Charles E. Rupprecht; Edward C. Holmes; Ian A. Wilson; Ruben O. Donis

Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.


Journal of Molecular Evolution | 2002

Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis.

Gareth M. Jenkins; Andrew Rambaut; Oliver G. Pybus; Edward C. Holmes

The study of rates of nucleotide substitution in RNA viruses is central to our understanding of their evolution. Herein we report a comprehensive analysis of substitution rates in 50 RNA viruses using a recently developed maximum likelihood phylogenetic method. This analysis revealed a significant relationship between genetic divergence and isolation time for an extensive array of RNA viruses, although more rate variation was usually present among lineages than would be expected under the constraints of a molecular clock. Despite the lack of a molecular clock, the range of statistically significant variation in overall substitution rates was surprisingly narrow for those viruses where a significant relationship between genetic divergence and time was found, as was the case when synonymous sites were considered alone, where the molecular clock was rejected less frequently. An analysis of the ecological and genetic factors that might explain this rate variation revealed some evidence of significantly lower substitution rates in vector-borne viruses, as well as a weak correlation between rate and genome length. Finally, a simulation study revealed that our maximum likelihood estimates of substitution rates are valid, even if the molecular clock is rejected, provided that sufficiently large data sets are analyzed.


Journal of General Virology | 1999

Evolutionary aspects of recombination in RNA viruses

Michael Worobey; Edward C. Holmes

IP: 54.70.40.11 On: Mon, 25 Sep 2017 04:45:12 Journal of General Virology (1999), 80, 2535–2543. Printed in Great Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Nature Reviews Genetics | 2004

The causes and consequences of HIV evolution.

Andrew Rambaut; David Posada; A. Crandall; Edward C. Holmes

Understanding the evolution of the human immunodeficiency virus (HIV) is crucial for reconstructing its origin, deciphering its interaction with the immune system and developing effective control strategies. Although it is clear that HIV-1 and HIV-2 originated in African primates, dating their transmission to humans is problematic, especially because of frequent recombination. Our ability to predict the spread of drug-resistance and immune-escape mutations depends on understanding how HIV evolution differs within and among hosts and on the role played by positive selection. For this purpose, extensive sampling of HIV genetic diversity is required, and is essential for informing the design of HIV vaccines.


Infection, Genetics and Evolution | 2003

The origin, emergence and evolutionary genetics of dengue virus.

Edward C. Holmes; S.Susanna Twiddy

Dengue is one of the most important emerging viruses, posing a threat to one-third of the global human population. Herein we show how the comparative analysis of gene sequence data has shed light on the origin and spread of dengue virus, as well as on the evolutionary processes that structure its genetic diversity. This reveals that dengue virus has a relatively recent evolutionary history, with the four serotypes originating approximately 1000 years ago and only establishing endemic transmission in humans in the last few hundred years. However, its place of origin remains uncertain as does the extent of genetic and phenotypic diversity present in the sylvatic (primate) transmission cycle. Although there is some evidence that viral strains differ in key phenotypic features such as virulence, and for positive selection at immunologically important sites, it seems likely that stochastic processes also play a major role in shaping viral genetic diversity, with lineage extinction a common occurrence. A more complete understanding of the evolution and epidemiology of dengue virus, particularly with respect to the aetiology of severe disease, will require large-scale prospective studies and the comparative analysis of complete genome sequences.


Nature Reviews Genetics | 2007

The evolution of epidemic influenza

Martha I. Nelson; Edward C. Holmes

Recent developments in complete-genome sequencing, antigenic mapping and epidemiological modelling are greatly improving our knowledge of the evolution of human influenza virus at the epidemiological scale. In particular, recent studies have revealed a more complex relationship between antigenic evolution, natural selection and reassortment than previously realized. Despite these advances, there is much that remains to be understood about the epidemiology of influenza virus, particularly the processes that determine the viruss strong seasonality. We argue that a complete understanding of the evolutionary biology of this important human pathogen will require a genomic view of genetic diversity, including the acquisition of polymorphism data from within individual hosts and from geographical regions, particularly the tropics, which have been poorly surveyed to date.


Microbiology and Molecular Biology Reviews | 2008

Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases

Colin R. Parrish; Edward C. Holmes; David M. Morens; Eun-Chung Park; Donald S. Burke; Charles H. Calisher; Catherine A. Laughlin; Linda J. Saif; Peter Daszak

SUMMARY Host range is a viral property reflecting natural hosts that are infected either as part of a principal transmission cycle or, less commonly, as “spillover” infections into alternative hosts. Rarely, viruses gain the ability to spread efficiently within a new host that was not previously exposed or susceptible. These transfers involve either increased exposure or the acquisition of variations that allow them to overcome barriers to infection of the new hosts. In these cases, devastating outbreaks can result. Steps involved in transfers of viruses to new hosts include contact between the virus and the host, infection of an initial individual leading to amplification and an outbreak, and the generation within the original or new host of viral variants that have the ability to spread efficiently between individuals in populations of the new host. Here we review what is known about host switching leading to viral emergence from known examples, considering the evolutionary mechanisms, virus-host interactions, host range barriers to infection, and processes that allow efficient host-to-host transmission in the new host population.

Collaboration


Dive into the Edward C. Holmes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mang Shi

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Zhen Zhang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha I. Nelson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Colin R. Parrish

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge