Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward E. S. Nieuwenhuis is active.

Publication


Featured researches published by Edward E. S. Nieuwenhuis.


Cell | 2008

XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease

Arthur Kaser; Ann-Hwee Lee; Andre Franke; Jonathan N. Glickman; Sebastian Zeissig; Herbert Tilg; Edward E. S. Nieuwenhuis; Darren E. Higgins; Stefan Schreiber; Laurie H. Glimcher; Richard S. Blumberg

Inflammatory bowel disease (IBD) has been attributed to aberrant mucosal immunity to the intestinal microbiota. The transcription factor XBP1, a key component of the endoplasmic reticulum (ER) stress response, is required for development and maintenance of secretory cells and linked to JNK activation. We hypothesized that a stressful environmental milieu in a rapidly proliferating tissue might instigate a proinflammatory response. We report that Xbp1 deletion in intestinal epithelial cells (IECs) results in spontaneous enteritis and increased susceptibility to induced colitis secondary to both Paneth cell dysfunction and an epithelium that is overly reactive to inducers of IBD such as bacterial products (flagellin) and TNFalpha. An association of XBP1 variants with both forms of human IBD (Crohns disease and ulcerative colitis) was identified and replicated (rs35873774; p value 1.6 x 10(-5)) with novel, private hypomorphic variants identified as susceptibility factors. Hence, intestinal inflammation can originate solely from XBP1 abnormalities in IECs, thus linking cell-specific ER stress to the induction of organ-specific inflammation.


Cell Stem Cell | 2013

Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients

Gerald Schwank; Bon-Kyoung Koo; Valentina Sasselli; Johanna F. Dekkers; Inha Heo; Turan Demircan; Nobuo Sasaki; Sander Boymans; Edwin Cuppen; Cornelis K. van der Ent; Edward E. S. Nieuwenhuis; Jeffrey M. Beekman; Hans Clevers

Single murine and human intestinal stem cells can be expanded in culture over long time periods as genetically and phenotypically stable epithelial organoids. Increased cAMP levels induce rapid swelling of such organoids by opening the cystic fibrosis transmembrane conductor receptor (CFTR). This response is lost in organoids derived from cystic fibrosis (CF) patients. Here we use the CRISPR/Cas9 genome editing system to correct the CFTR locus by homologous recombination in cultured intestinal stem cells of CF patients. The corrected allele is expressed and fully functional as measured in clonally expanded organoids. This study provides proof of concept for gene correction by homologous recombination in primary adult stem cells derived from patients with a single-gene hereditary defect.


Journal of Experimental Medicine | 2002

The Transcription Factor T-bet Regulates Mucosal T Cell Activation in Experimental Colitis and Crohn's Disease

Markus F Neurath; B. Weigmann; Susetta Finotto; Jonathan N. Glickman; Edward E. S. Nieuwenhuis; Hideki Iijima; Atsushi Mizoguchi; Emiko Mizoguchi; Jonas Mudter; Peter R. Galle; Atul K. Bhan; F. Autschbach; Brandon M. Sullivan; Susanne J. Szabo; Laurie H. Glimcher; Richard S. Blumberg

The balance between pro and antiinflammatory cytokines secreted by T cells regulates both the initiation and perpetuation of inflammatory bowel diseases (IBD). In particular, the balance between interferon (IFN)-γ/interleukin (IL)-4 and transforming growth factor (TGF)-β activity controls chronic intestinal inflammation. However, the molecular pathways that evoke these responses are not well understood. Here, we describe a critical role for the transcription factor T-bet in controlling the mucosal cytokine balance and clinical disease. We studied the expression and function of T-bet in patients with IBD and in mucosal T cells in various T helper (Th)1- and Th2-mediated animal models of chronic intestinal inflammation by taking advantage of mice that lack T-bet and retroviral transduction techniques, respectively. Whereas retroviral transduction of T-bet in CD62L+ CD4+ T cells exacerbated colitis in reconstituted SCID mice, T-bet–deficient T cells failed to induce colitis in adoptive transfer experiments suggesting that overexpression of T-bet is essential and sufficient to promote Th1-mediated colitis in vivo. Furthermore, T-bet–deficient CD62L− CD4+ T cells showed enhanced protective functions in Th1-mediated colitis and exhibited increased TGF-β signaling suggesting that a T-bet driven pathway of T cell activation controls the intestinal balance between IFN-γ/IL-4 and TGF-β responses and the development of chronic intestinal inflammation in T cell–mediated colitis. Furthermore, TGF-β was found to suppress T-bet expression suggesting a reciprocal relationship between TGF-β and T-bet in mucosal T cells. In summary, our data suggest a key regulatory role of T-bet in the pathogenesis of T cell–mediated colitis. Specific targeting of this pathway may be a promising novel approach for the treatment of patients with Crohns disease and other autoimmune diseases mediated by Th1 T lymphocytes.


Immunity | 2002

Oxazolone Colitis, a Th2 Colitis Model Resembling Ulcerative Colitis, Is Mediated by IL-13-Producing NK-T Cells

Frank Heller; Ivan J. Fuss; Edward E. S. Nieuwenhuis; Richard S. Blumberg; Warren Strober

Oxazolone colitis (OC) is an experimental colitis that has a histologic resemblance to human ulcerative colitis. Here we show that IL-13 production is a significant pathologic factor in OC since its neutralization by IL-13Ralpha2-Fc administration prevents colitis. We further show that OC is mediated by NK-T cells since it can be induced neither in mice depleted of NK-T cells nor in mice that cannot present antigen to NK-T cells and mice lacking an NK-T cell-associated TCR. Finally, we show that NK-T cells are the source of the IL-13, since they produce IL-13 upon stimulation by alpha-galactosylceramide, an NK-T cell-specific antigen. These data thus describe a cellular mechanism underlying an experimental colitis that may explain the pathogenesis of ulcerative colitis.


Cell | 2015

Long-term culture of genome-stable bipotent stem cells from adult human liver

Meritxell Huch; Helmuth Gehart; Ruben van Boxtel; Karien Hamer; Francis Blokzijl; Monique M.A. Verstegen; Ewa Ellis; Martien van Wenum; Sabine A. Fuchs; Joep de Ligt; Marc van de Wetering; Nobuo Sasaki; Susanne J. Boers; Hans Kemperman; Jeroen de Jonge; Jan N. M. IJzermans; Edward E. S. Nieuwenhuis; Ruurdtje Hoekstra; Stephen C. Strom; Robert G. Vries; Luc J. W. van der Laan; Edwin Cuppen; Hans Clevers

Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy.


Nature Medicine | 2013

A functional CFTR assay using primary cystic fibrosis intestinal organoids

Johanna F. Dekkers; Caroline L. Wiegerinck; Hugo R. de Jonge; Inez Bronsveld; Hettie M. Janssens; Karin M. de Winter-de Groot; Arianne M Brandsma; Nienke W M de Jong; Marcel Bijvelds; Bob J. Scholte; Edward E. S. Nieuwenhuis; Stieneke van den Brink; Hans Clevers; Cornelis K. van der Ent; Sabine Middendorp; Jeffrey M. Beekman

We recently established conditions allowing for long-term expansion of epithelial organoids from intestine, recapitulating essential features of the in vivo tissue architecture. Here we apply this technology to study primary intestinal organoids of people suffering from cystic fibrosis, a disease caused by mutations in CFTR, encoding cystic fibrosis transmembrane conductance regulator. Forskolin induces rapid swelling of organoids derived from healthy controls or wild-type mice, but this effect is strongly reduced in organoids of subjects with cystic fibrosis or in mice carrying the Cftr F508del mutation and is absent in Cftr-deficient organoids. This pattern is phenocopied by CFTR-specific inhibitors. Forskolin-induced swelling of in vitro–expanded human control and cystic fibrosis organoids corresponds quantitatively with forskolin-induced anion currents in freshly excised ex vivo rectal biopsies. Function of the CFTR F508del mutant protein is restored by incubation at low temperature, as well as by CFTR-restoring compounds. This relatively simple and robust assay will facilitate diagnosis, functional studies, drug development and personalized medicine approaches in cystic fibrosis.


Nature Medicine | 2002

CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung.

Edward E. S. Nieuwenhuis; Tetsuya Matsumoto; Mark A. Exley; Robbert A. Schleipman; Jonathan N. Glickman; Dan T. Bailey; Nadia Corazza; Sean P. Colgan; Andrew B. Onderdonk; Richard S. Blumberg

CD1d-restricted T cells are implicated as key players in host defense against various microbial infections. However, the mechanisms involved and the role they play, if any, at the mucosal surfaces where pathogenic infections are initiated is unknown. In a murine pneumonia model established by intranasal application of Pseudomonas aeruginosa, CD1d−/− mice showed markedly reduced pulmonary eradication of P. aeruginosa compared with wild-type mice; this was associated with significantly lower amounts of macrophage inflammatory protein-2 and reduced numbers of neutrophils within the bronchoalveolar lavage fluid. Corollarily, treatment of mice with α-galactosylceramide—a lipid that activates CD1d-restricted T cells—increased the amount of interferon-γ; this was associated with rapid pulmonary clearance through enhanced phagocytosis of P. aeruginosa by alveolar macrophages. These results reveal a crucial role played by CD1d-restricted T cells in regulating the antimicrobial immune functions of macrophages at the lung mucosal surface.


Nature | 2015

Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration

Caroline A. Lindemans; Marco Calafiore; Anna Mertelsmann; Margaret H. O’Connor; Jarrod A. Dudakov; Robert R. Jenq; Enrico Velardi; Lauren F. Young; Odette M. Smith; Gillian Lawrence; Juliet Ivanov; Ya-Yuan Fu; Shuichiro Takashima; Guoqiang Hua; Maria Laura Martin; Kevin P. O’Rourke; Yuan-Hung Lo; Michal Mokry; Monica Romera-Hernandez; Lukas E. Dow; Edward E. S. Nieuwenhuis; Noah F. Shroyer; Chen Liu; Richard Kolesnick; Marcel R.M. van den Brink; Alan M. Hanash

Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5+ crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5+ ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Disruption of T helper 2-immune responses in Epstein–Barr virus-induced gene 3-deficient mice

Edward E. S. Nieuwenhuis; Markus F Neurath; Nadia Corazza; Hideki Iijima; Joanne Trgovcich; Stefan Wirtz; Jonathan N. Glickman; Dan T. Bailey; Masaru Yoshida; Peter R. Galle; Mitchell Kronenberg; Mark Birkenbach; Richard S. Blumberg

Epstein–Barr virus-induced gene 3 (EBI3) is a widely expressed IL-12p40-related protein that associates as a heterodimer with either IL-12p35 or an IL-12p35 homologue, p28, to create a new cytokine (IL-27). To define the function of EBI3 in vivo, we generated knockout mice in which the ebi3 gene was targeted by homologous recombination. EBI3−/− mice exhibited normal numbers of both naive and mature CD4+ and CD8+ T cells and B cells, but markedly decreased numbers of invariant natural killer T cells (iNKT) as defined by staining with an α-galactosylceramide (αGalCer)-loaded CD1d-tetramer. iNKT cells from EBI3−/− mice exhibited decreased IL-4 and, to a lesser extent, IFN-γ production after αGalCer stimulation in vitro. A sustained decrease in IL-4 production was also observed in EBI3−/− mice after αGalCer stimulation in vivo in contrast to IFN-γ production, which was only transiently decreased under such stimulation. Notably, EBI3−/− mice were resistant to the induction of immunopathology associated with oxazolone-induced colitis, a colitis model mediated primarily by T helper (Th) 2-type cytokine production by iNKT cells. In contrast, trinitrobenzene sulfonic acid-induced colitis, a predominantly Th1-mediated colitis model, was unaffected. Thus, EBI3 plays a critical regulatory role in the induction of Th2-type immune responses and the development of Th2-mediated tissue inflammation in vivo, which may be mediated through the control of iNKT cell function.


Journal of Immunology | 2005

EBV-Induced Gene 3 Transcription Is Induced by TLR Signaling in Primary Dendritic Cells via NF-κB Activation

Stefan Wirtz; Christoph Becker; Massimo C. Fantini; Edward E. S. Nieuwenhuis; Ingrid Tubbe; Peter R. Galle; Hans Schild; Mark Birkenbach; Richard S. Blumberg; Markus F. Neurath

The EBV-induced gene 3 (EBI3) is expressed in dendritic cells (DCs) and part of the cytokine IL-27 that controls Th cell development. However, its regulated expression in DCs is poorly understood. In the present study we demonstrate that EBI3 is expressed in splenic CD8−, CD8+, and plasmacytoid DC subsets and is induced upon TLR signaling. Cloning and functional analysis of the EBI3 promoter using in vivo footprinting and mutagenesis showed that stimulation via TLR2, TLR4, and TLR9 transactivated the promoter in primary DCs via NF-κB and Ets binding sites at −90 and −73 bp upstream of the transcriptional start site, respectively. Furthermore, we observed that NF-κB p50/p65 and PU.1 were sufficient to transactivate the EBI3 promoter in EBI3-deficient 293 cells. Finally, induced EBI3 gene expression in DCs was reduced or abrogated in TLR-2/TLR4, TLR9, and MyD88 knockout mice, whereas both basal and inducible EBI3 mRNA levels in DCs were strongly suppressed in NF-κB p50-deficient mice. In summary, these data suggest that EBI3 expression in DCs is transcriptionally regulated by TLR signaling via MyD88 and NF-κB. Thus, EBI3 gene transcription in DCs is induced rapidly by TLR signaling during innate immune responses preceding cytokine driven Th cell development.

Collaboration


Dive into the Edward E. S. Nieuwenhuis's collaboration.

Top Co-Authors

Avatar

Janneke N. Samsom

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Richard S. Blumberg

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michal Mokry

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Johanna C. Escher

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hans Clevers

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge