Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward H. Egelman is active.

Publication


Featured researches published by Edward H. Egelman.


Cell | 2008

Structural Basis of Membrane Invagination by F-BAR Domains

Adam Frost; Rushika M. Perera; Aurélien Roux; Krasimir A. Spasov; Olivier Destaing; Edward H. Egelman; Pietro De Camilli; Vinzenz M. Unger

BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the modules concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domains lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.


Ultramicroscopy | 2000

A robust algorithm for the reconstruction of helical filaments using single-particle methods

Edward H. Egelman

Some of the earliest methods for three-dimensional reconstruction from electron microscopic images were developed for helical objects. Single-particle methods have been used with great success for the three-dimensional reconstruction of macromolecular assemblies that have no internal symmetry or closed point group symmetries. An approach is presented for the application of single-particle methods to helical filaments that surmounts many of the difficulties of helical image analysis, including indexing, unbending and the need to find long helically symmetric filament segments. It is shown using both human Rad51 and E. coli RecA nucleoprotein filaments that this approach converges without user intervention to a stable solution, and that it has the potential to overcome many of the problems associated with image analysis of disordered helical polymers. The method can be applied transparently to structures where Bessel overlap would greatly complicate helical analysis. In addition, the procedure allows for the ab initio determination of helical symmetry, when no prior knowledge exists.


Cell | 2014

Unified Polymerization Mechanism for the Assembly of ASC-Dependent Inflammasomes

Alvin Lu; Jianbin Ruan; Qian Yin; Maninjay K. Atianand; Matthijn R. J. Vos; Gunnar F. Schröder; Katherine A. Fitzgerald; Hao Wu; Edward H. Egelman

Inflammasomes elicit host defense inside cells by activating caspase-1 for cytokine maturation and cell death. AIM2 and NLRP3 are representative sensor proteins in two major families of inflammasomes. The adaptor protein ASC bridges the sensor proteins and caspase-1 to form ternary inflammasome complexes, achieved through pyrin domain (PYD) interactions between sensors and ASC and through caspase activation and recruitment domain (CARD) interactions between ASC and caspase-1. We found that PYD and CARD both form filaments. Activated AIM2 and NLRP3 nucleate PYD filaments of ASC, which, in turn, cluster the CARD of ASC. ASC thus nucleates CARD filaments of caspase-1, leading to proximity-induced activation. Endogenous NLRP3 inflammasome is also filamentous. The cryoelectron microscopy structure of ASC(PYD) filament at near-atomic resolution provides a template for homo- and hetero-PYD/PYD associations, as confirmed by structure-guided mutagenesis. We propose that ASC-dependent inflammasomes in both families share a unified assembly mechanism that involves two successive steps of nucleation-induced polymerization. PAPERFLICK:


Structure | 2012

Outcome of the first electron microscopy validation task force meeting

Richard Henderson; Andrej Sali; Matthew L. Baker; Bridget Carragher; Batsal Devkota; Kenneth H. Downing; Edward H. Egelman; Zukang Feng; Joachim Frank; Nikolaus Grigorieff; Wen Jiang; Steven J. Ludtke; Ohad Medalia; Pawel A. Penczek; Peter B. Rosenthal; Michael G. Rossmann; Michael F. Schmid; Gunnar F. Schröder; Alasdair C. Steven; David L. Stokes; John D. Westbrook; Willy Wriggers; Huanwang Yang; Jasmine Young; Helen M. Berman; Wah Chiu; Gerard J. Kleywegt; Catherine L. Lawson

This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA

Xiong Yu; Steven A. Jacobs; Stephen C. West; Tomoko Ogawa; Edward H. Egelman

Both the bacterial RecA protein and the eukaryotic Rad51 protein form helical nucleoprotein filaments on DNA that catalyze strand transfer between two homologous DNA molecules. However, only the ATP-binding cores of these proteins have been conserved, and this same core is also found within helicases and the F1-ATPase. The C-terminal domain of the RecA protein forms lobes within the helical RecA filament. However, the Rad51 proteins do not have the C-terminal domain found in RecA, but have an N-terminal extension that is absent in the RecA protein. Both the RecA C-terminal domain and the Rad51 N-terminal domain bind DNA. We have used electron microscopy to show that the lobes of the yeast and human Rad51 filaments appear to be formed by N-terminal domains. These lobes are conformationally flexible in both RecA and Rad51. Within RecA filaments, the change between the “active” and “inactive” states appears to mainly involve a large movement of the C-terminal lobe. The N-terminal domain of Rad51 and the C-terminal domain of RecA may have arisen from convergent evolution to play similar roles in the filaments.


Nature | 2005

Atomic model of a myosin filament in the relaxed state.

John L. Woodhead; Fa-Qing Zhao; Roger Craig; Edward H. Egelman; Lorenzo Alamo; Raúl Padrón

Contraction of muscle involves the cyclic interaction of myosin heads on the thick filaments with actin subunits in the thin filaments. Muscles relax when this interaction is blocked by molecular switches on either or both filaments. Insight into the relaxed (switched OFF) structure of myosin has come from electron microscopic studies of smooth muscle myosin molecules, which are regulated by phosphorylation. These studies suggest that the OFF state is achieved by an asymmetric, intramolecular interaction between the actin-binding region of one head and the converter region of the other, switching both heads off. Although this is a plausible model for relaxation based on isolated myosin molecules, it does not reveal whether this structure is present in native myosin filaments. Here we analyse the structure of a phosphorylation-regulated striated muscle thick filament using cryo-electron microscopy. Three-dimensional reconstruction and atomic fitting studies suggest that the ‘interacting-head’ structure is also present in the filament, and that it may underlie the relaxed state of thick filaments in both smooth and myosin-regulated striated muscles over a wide range of species.


Nature Structural & Molecular Biology | 2007

Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2.

Fumiko Esashi; Vitold E. Galkin; Xiong Yu; Edward H. Egelman; Stephen C. West

The human breast cancer susceptibility gene BRCA2 is required for the regulation of RAD51-mediated homologous recombinational repair. BRCA2 interacts with RAD51 monomers, as well as nucleoprotein filaments, primarily though the conserved BRC motifs. The unrelated C-terminal region of BRCA2 also interacts with RAD51. Here we show that the BRCA2 C terminus interacts directly with RAD51 filaments, but not monomers, by binding an interface created by two adjacent RAD51 protomers. These interactions stabilize filaments so that they cannot be dissociated by association with BRC repeats. Interaction of the BRCA2 C terminus with the RAD51 filament causes a large movement of the flexible RAD51 N-terminal domain that is important in regulating filament dynamics. We suggest that interactions of the BRCA2 C-terminal region with RAD51 may facilitate efficient nucleation of RAD51 multimers on DNA and thereby stimulate recombination-mediated repair.


Current Biology | 2000

The human Rad52 protein exists as a heptameric ring

Alicja Z. Stasiak; Eric Larquet; Andrzej Stasiak; Shirley A. Müller; Andreas Engel; Eric Van Dyck; Stephen C. West; Edward H. Egelman

The RAD52 epistasis group was identified in yeast as a group of genes required to repair DNA damaged by ionizing radiation [1]. Genetic evidence indicates that Rad52 functions in Rad51-dependent and Rad51-independent recombination pathways [2] [3] [4]. Consistent with this, purified yeast and human Rad52 proteins have been shown to promote single-strand DNA annealing [5] [6] [7] and to stimulate Rad51-mediated homologous pairing [8] [9] [10] [11]. Electron microscopic examinations of the yeast [12] and human [13] Rad52 proteins have revealed their assembly into ring-like structures in vitro. Using both conventional transmission electron microscopy and scanning transmission electron microscopy (STEM), we found that the human Rad52 protein forms heptameric rings. A three-dimensional (3D) reconstruction revealed that the heptamer has a large central channel. Like the hexameric helicases such as Escherichia coli DnaB [14] [15], bacteriophage T7 gp4b [16] [17], simian virus 40 (SV40) large T antigen [18] and papilloma virus E1 [19], the Rad52 rings show a distinctly chiral arrangement of subunits. Thus, the structures formed by the hexameric helicases may be a more general property of other proteins involved in DNA metabolism, including those, such as Rad52, that do not bind and hydrolyze ATP.


Nature Methods | 2015

Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement

Frank DiMaio; Yifan Song; Xueming Li; Matthias J Brunner; Chunfu Xu; Vincent P. Conticello; Edward H. Egelman; Thomas C Marlovits; Yifan Cheng; David Baker

We describe a general approach for refining protein structure models on the basis of cryo-electron microscopy maps with near-atomic resolution. The method integrates Monte Carlo sampling with local density-guided optimization, Rosetta all-atom refinement and real-space B-factor fitting. In tests on experimental maps of three different systems with 4.5-Å resolution or better, the method consistently produced models with atomic-level accuracy largely independently of starting-model quality, and it outperformed the molecular dynamics–based MDFF method. Cross-validated model quality statistics correlated with model accuracy over the three test systems.


Nature Structural & Molecular Biology | 2004

The stalk region of dynamin drives the constriction of dynamin tubes

Yen-Ju Chen; Peijun Zhang; Edward H. Egelman; Jenny E. Hinshaw

The GTPase dynamin is essential for numerous vesiculation events including clathrin-mediated endocytosis. Upon GTP hydrolysis, dynamin constricts a lipid bilayer. Previously, a three-dimensional structure of mutant dynamin in the constricted state was determined by helical reconstruction methods. We solved the nonconstricted state by a single-particle approach and show that the stalk region of dynamin undergoes a large conformational change that drives tube constriction.

Collaboration


Dive into the Edward H. Egelman's collaboration.

Top Co-Authors

Avatar

Xiong Yu

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vitold E. Galkin

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank DiMaio

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Shixin Yang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Emil Reisler

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge