Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward J. Calabrese is active.

Publication


Featured researches published by Edward J. Calabrese.


Nature | 2003

Toxicology rethinks its central belief

Edward J. Calabrese; Linda A. Baldwin

Hormesis demands a reappraisal of the way risks are assessed.


Environmental Toxicology and Chemistry | 2007

Hormesis: Why it is important to toxicology and toxicologists

Edward J. Calabrese

This article provides a comprehensive review of hormesis, a dose-response concept that is characterized by a low-dose stimulation and a high-dose inhibition. The article traces the historical foundations of hormesis, its quantitative features and mechanistic foundations, and its risk assessment implications. The article indicates that the hormetic dose response is the most fundamental dose response, significantly outcompeting other leading dose-response models in large-scale, head-to-head evaluations. The hormetic dose response is highly generalizable, being independent of biological model, endpoint measured, chemical class, and interindividual variability. Hormesis also provides a framework for the study and assessment of chemical mixtures, incorporating the concept of additivity and synergism. Because the hormetic biphasic dose response represents a general pattern of biological responsiveness, it is expected that it will become progressively more significant within toxicological evaluation and risk assessment practices as well as have numerous biomedical applications.


Antioxidants & Redox Signaling | 2010

Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders

Vittorio Calabrese; Carolin Cornelius; Albena T. Dinkova-Kostova; Edward J. Calabrese; Mark P. Mattson

Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose-response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling.


Regulatory Toxicology and Pharmacology | 1989

How much soil do young children ingest: An epidemiologic study

Edward J. Calabrese; Ramon M. Barnes; Edward J. Stanek; Harris Pastides; Charles E. Gilbert; Peter L. M. Veneman; Xioaru Wang; Alexandra Lásztity; Paul T. Kostecki

Sixty-four children aged 1-4 years were evaluated for the extent to which they ingest soil. The study followed the soil tracer methodology of S. Binder, D. Sokal, and D. Maughan (1986, Arch. Environ. Health, 41, 341-345). However, the present study included a number of modifications from the Binder et al. study. The principal new features were (1) increasing the tracer elements from three to eight; (2) using a mass-balance approach so that the contribution of food and medicine ingestion would be considered; (3) extending the period of observation from 3 days to 8 days; and (4) validating the methodology by having adult volunteers ingest known amounts of soil in a mass-balance validation study. The principal findings reveal the following. (1) The adult study confirmed the validity of the tracer methodology to estimate soil ingestion. (2) Of the eight tracers employed in the adult study, only Al, Si, and Y provided sufficient recovery data that was directly acceptably stable and reliable. (3) If food ingestion determinations were taken into consideration, the median estimates of soil ingestion from the eight tracers ranged from a low of 9 mg/day (Y) to a high of 96 mg/day (V); the median values of Al, Si, and Y, the three most reliable tracers, ranged from 9 mg/day to 40 mg/day. (4) One child had soil ingestion values ranging from 5 to 8 g/day, depending on the tracer. (5) If food ingestion had not been considered, the estimates of soil ingestion would have increased about two- to sixfold, depending on the tracer with Ti and Y being most affected by food intake. (6) Since soil and dust samples did not significantly differ in their levels of tracer elements, no reliable differentiation between the contribution of ingestion of dust and soil could be made. (7) These findings are generally consistent with the previously reported findings of Binder et al. (1986) and P. Clausing, B. Brunekreff, and J.H. van Wijnen (1987, Int. Arch. Occup. Med., 59, 73) if these latter studies are corrected for ingestion of tracers in food and medicine. The findings also account for the apparent discrepancy between the estimates from Al and Si and estimates based on Ti in previous studies. Thus the elevated estimates of soil ingestion by Ti were substantially reduced when food ingestion is considered.


Biochimica et Biophysica Acta | 2012

Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity.

Vittorio Calabrese; Carolin Cornelius; Albena T. Dinkova-Kostova; Ivo Iavicoli; Rosanna Di Paola; Aleardo Koverech; Salvatore Cuzzocrea; Enrico Rizzarelli; Edward J. Calabrese

Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.


British Journal of Clinical Pharmacology | 2008

Hormesis and medicine

Edward J. Calabrese

Evidence is presented which supports the conclusion that the hormetic dose-response model is the most common and fundamental in the biological and biomedical sciences, being highly generalizable across biological model, endpoint measured and chemical class and physical agent. The paper provides a broad spectrum of applications of the hormesis concept for clinical medicine including anxiety, seizure, memory, stroke, cancer chemotherapy, dermatological processes such as hair growth, osteoporosis, ocular diseases, including retinal detachment, statin effects on cardiovascular function and tumour development, benign prostate enlargement, male sexual behaviours/dysfunctions, and prion diseases.


Critical Reviews in Toxicology | 2001

Hormesis: A Generalizable and Unifying Hypothesis

Edward J. Calabrese; Linda A. Baldwin

The present article represents a comprehensive effort to assess the hypothesis that hormesis is a highly generalizable biological phenomenon independent of environmental stressor, biological endpoint, and experimental model system. The evaluative methodology and complementary approaches employed to assess this question are (1) evolutionary biology-based theoretical paradigm; (2) evaluation of >20,000 toxicology articles using a priori entry and evaluative criteria; (3) evaluation of 17 large-scale studies each providing data on numerous agents tested in the same experimental model by the same research team; (4) the assimilation of experimental pharmacological data on 24 receptor systems in which biphasic dose responses have been established reproducibly along with hormetic mechanism elucidation; and (5) assessment of the original hormesis database with 1600 dose-response relationships demonstrating evidence consistent with the hormesis hypothesis. The complementary approaches for assessing hormesis provided strong support for its credibility as a central biological theory based on its high frequency of occurrence and quantitative features of expression within microbe, plant, and invertebrate and vertebrate animal systems. The findings suggest that hormetic effects represent evolutionary-based adaptive responses to environmentally induced disruptions in homeostasis. Such adaptive responses, which are incorporated into organismal integrative physiological systems and now clarified at the mechanistic level for more than two dozen receptor systems, provide a cogent basis for the application of hormetic mechanisms in the elucidation of fundamental evolutionary-based biological processes and in the development of novel clinical modalities.


Risk Analysis | 1999

Hormesis: A Highly Generalizable and Reproducible Phenomenon With Important Implications for Risk Assessment

Edward J. Calabrese; Linda A. Baldwin; Charles D. Holland

From a comprehensive search of the literature, the hormesis phenomenon was found to occur over a wide range of chemicals, taxonomic groups, and endpoints. By use of computer searches and extensive cross-referencing, nearly 3000 potentially relevant articles were identified. Evidence of chemical and radiation hormesis was judged to have occurred in approximately 1000 of these by use of a priori criteria. These criteria included study design features (e.g., number of doses, dose range), dose-response relationship, statistical analysis, and reproducibility of results. Numerous biological endpoints were assessed, with growth responses the most prevalent, followed by metabolic effects, reproductive responses, longevity, and cancer. Hormetic responses were generally observed to be of limited magnitude with an average maximum stimulation of 30 to 60 percent over that of the controls. This maximum usually occurred 4- to 5-fold below the NOAEL for a particular endpoint. The present analysis suggests that hormesis is a reproducible and generalizable biological phenomenon and is a fundamental component of many, if not most, dose-response relationships. The relatively infrequent observation of hormesis in the literature is believed to be due primarily to experimental design considerations, especially with respect to the number and range of doses and endpoint selection. Because of regulatory considerations, most toxicologic studies have been carried out at high doses above the low-dose region where the hormesis phenomenon occurs.


Human & Experimental Toxicology | 2010

Hormesis is central to toxicology, pharmacology and risk assessment

Edward J. Calabrese

This paper summarizes numerous conceptual and experimental advances over the past two decades in the study of hormesis. Hormesis is now generally accepted as a real and reproducible biological phenomenon, being highly generalized and independent of biological model, endpoint measured and chemical class/physical stressor. The quantitative features of the hormetic dose response are generally highly consistent, regardless of the model and mechanism, and represent a quantitative index of biological plasticity at multiple levels of biological organization. The hormetic dose-response model has been demonstrated to make far more accurate predictions of responses in low dose zones than either the threshold or linear at low dose models. Numerous therapeutic agents widely used by humans are based on the hormetic dose response and its low dose stimulatory characteristics. It is expected that as low dose responses come to dominate toxicological research that risk assessment practices will incorporate hormetic concepts in the standard setting process.


International Journal of Toxicology | 1997

The Dose Determines the Stimulation (and Poison): Development of A Chemical Hormesis Database

Edward J. Calabrese; Linda A. Baldwin

A comprehensive effort was undertaken to identify articles demonstrating chemical hormesis. Nearly 4000 potentially relevant articles were retrieved from preliminary computer searches utilizing various keyword descriptors and extensive cross-referencing. A priori evaluation criteria were established including study design features (e.g., number of doses, dose range), statistical analysis, and reproducibility of results. Evidence of chemical hormesis was judged to have occurred in approximately 350 of the 4000 studies evaluated. Chemical hormesis was observed in a wide range of taxonomic groups and involved agents representing highly diverse chemical classes, many of potential environmental relevance. Numerous biologic endpoints were assessed, with growth responses the most prevalent, followed by metabolic effects, longevity, reproductive responses, and survival. Hormetic responses were generally observed to be of limited magnitude with the average low-dose maximum stimulation approximately 50% greater than controls. The hormetic dose-response range was generally limited to about one order of magnitude with the upper end of the hormetic curve approaching the estimated no-observed-effect level (NOEL) for the particular endpoint. Based on the evaluation criteria, high to moderate evidence of hormesis was observed in studies comprised of ≥ doses with <3 doses in the hormetic zone. The present analysis suggests that chem ical hormesis is a reproducible and generalizable biologic phenomenon. Over the last decade advances have been made providing mechanistic insight helpful in explaining the phenomenon of chemical hormesis in multiple biologic systems with various endpoints. The reason for the uncertainty surrounding the existence of hormesis as a “real phenomenon” is believed to be the result of its relatively infrequent observation in the literature due to experimental design considerations, especially with respect to the number of doses, range of doses, and endpoint selection.

Collaboration


Dive into the Edward J. Calabrese's collaboration.

Top Co-Authors

Avatar

Linda A. Baldwin

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Edward J. Stanek

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Paul T. Kostecki

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Gary S. Moore

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Iavicoli

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Denise A. Leonard

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Robert W. Tuthill

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Marc A. Nascarella

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge