Edward L. Bartlett
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward L. Bartlett.
The Journal of Neuroscience | 1997
Daniel Peruzzi; Edward L. Bartlett; Philip H. Smith; Douglas L. Oliver
The goal was to investigate possible monosynaptic GABAergic projections from the inferior colliculus (IC) to thalamocortical neurons of the medial geniculate body (MGB) in the rat. Although there is little evidence for such a projection in other sensory thalamic nuclei, a GABAergic, ascending auditory projection was reported recently in the cat. In the present study, immunohistochemical and tract-tracing methods were used to identify neurons in the IC that contain GABA and project to the MGB. GABA-positive projection neurons were most numerous in the central nucleus and less so in the dorsal and lateral cortex. They were rare in the lateral tegmental system and brachium of the IC. The dorsal nucleus of the lateral lemniscus also contained GABA-positive projection neurons. In brain slices, stimulation of the brachium produced monosynaptic inhibitory postsynaptic potentials in morphologically identified thalamocortical relay neurons. The inhibitory potentials cannot originate locally, because they persisted when ionotropic glutamatergic transmission was blocked. Typically, brachium stimulation elicited a GABAA-mediated inhibitory potential followed by an excitatory potential and a longer latency GABAB-mediated inhibitory potential. We conclude that the GABA-containing neurons of the IC make short-latency, monosynaptic inputs to the thalamocortical projection neurons in the MGB. Such inputs may distinguish the main auditory pathway from indirect or tegmental auditory pathways as well as from other sensory systems. Monosynaptic inhibitory inputs to the medial geniculate may be important for the regulation of firing patterns in thalamocortical neurons.
Neuroscience | 2008
Xiaoqin Wang; Thomas Lu; Daniel Bendor; Edward L. Bartlett
How the brain processes temporal information embedded in sounds is a core question in auditory research. This article synthesizes recent studies from our laboratory regarding neural representations of time-varying signals in auditory cortex and thalamus in awake marmoset monkeys. Findings from these studies show that 1) the primary auditory cortex (A1) uses a temporal representation to encode slowly varying acoustic signals and a firing rate-based representation to encode rapidly changing acoustic signals, 2) the dual temporal-rate representations in A1 represent a progressive transformation from the auditory thalamus, 3) firing rate-based representations in the form of monotonic rate-code are also found to encode slow temporal repetitions in the range of acoustic flutter in A1 and more prevalently in the cortical fields rostral to A1 in the core region of marmoset auditory cortex, suggesting further temporal-to-rate transformations in higher cortical areas. These findings indicate that the auditory cortex forms internal representations of temporal characteristics of sounds that are no longer faithful replicas of their acoustic structures. We suggest that such transformations are necessary for the auditory cortex to perform a wide range of functions including sound segmentation, object processing and multi-sensory integration.
Neuroscience | 2000
Edward L. Bartlett; J.M Stark; R.W. Guillery; Philip H. Smith
Neurons throughout the rat medial geniculate body, including the dorsal and ventral divisions, display a variety of responses to auditory stimuli. To investigate possible structural determinants of this variability, measurements of axon terminal profile area and postsynaptic dendrite diameter were made on inferior colliculus and corticothalamic terminal profiles in the medial geniculate body identified by anterograde tracer labeling following injections into the inferior colliculus or cortex. Over 90% of the synapses observed were axodendritic, with few axosomatic synapses. Small (<0.5 microm(2)) and large (>1.0 microm(2)) collicular profiles were found throughout the medial geniculate, but were smaller on average in the dorsal division (0.49+/-0.49 microm(2)) than in the ventral division (0.70+/-0.64 microm(2)). Almost all corticothalamic profiles were small and ended on small-caliber dendrites (0.57+/-0.25 microm diameter) throughout the medial geniculate. A few very large (>2.0 microm(2)) corticothalamic profiles were found in the dorsal division and in the marginal zone of the medial geniculate. GABA immunostaining demonstrated the presence of GABAergic profiles arising from cells in the inferior colliculus. These profiles were compared with GABAergic profiles not labeled with anterograde tracer, which were presumed to be unlabeled inferior colliculus profiles or thalamic reticular nucleus profiles. The distributions of dendritic diameters postsynaptic to collicular, cortical and unlabeled GABAergic profiles were compared with dendritic diameters of intracellularly labeled medial geniculate neurons from rat brain slices. Our results demonstrate a corticothalamic projection to medial geniculate body that is similar to other sensory corticothalamic projections. However, the heterogeneous distributions of excitatory inferior collicular terminal sizes and postsynaptic dendritic diameters, along with the presence of a GABAergic inferior collicular projection to dendrites in the medial geniculate body, suggest a colliculogeniculate projection that is more complex than the ascending projections to other sensory thalamic nuclei. These findings may be useful in understanding some of the differences in the response characteristics of medial geniculate neurons in vivo.
Pediatrics | 2008
Lawrence S. Wissow; Anne M. Gadomski; Debra L. Roter; Susan Larson; Jonathan D. Brown; Ciara Zachary; Edward L. Bartlett; Ivor B. Horn; Xianghua Luo; Mei Cheng Wang
OBJECTIVE. We examined child and parent outcomes of training providers to engage families efficiently and to reduce common symptoms of a range of mental health problems and disorders. METHODS. Training involved three 1-hour discussions structured around video examples of family/provider communication skills, each followed by practice with standardized patients and self-evaluation. Skills targeted eliciting parent and child concerns, partnering with families, and increasing expectations that treatment would be helpful. We tested the training with providers at 13 sites in rural New York, urban Maryland, and Washington, DC. Children (5–16 years of age) making routine visits were enrolled if they screened “possible” or “probable” for mental disorders with the Strengths and Difficulties Questionnaire or if their provider said they were likely to have an emotional or behavioral problem. Children and their parents were then monitored for 6 months, to assess changes in parent-rated symptoms and impairment and parent symptoms. RESULTS. Fifty-eight providers (31 trained and 27 control) and 418 children (248 patients of trained providers and 170 patients of control providers) participated. Among the children, 72% were in the possible or probable categories. Approximately one half (54%) were white, 30% black, 12% Latino, and 4% other ethnicities. Eighty-eight percent (367 children) completed follow-up monitoring. At 6 months, minority children cared for by trained providers had greater reduction in impairment (−0.91 points) than did those cared for by control providers but no greater reduction in symptoms. Seeing a trained provider did not have an impact on symptoms or impairment among white children. Parents of children cared for by trained providers experienced greater reduction in symptoms (−1.7 points) than did those cared for by control providers. CONCLUSION. Brief provider communication training had a positive impact on parent mental health symptoms and reduced minority childrens impairment across a range of problems.
Neuroscience | 2008
Xiaoqin Wang; Thomas Lu; Daniel Bendor; Edward L. Bartlett
How the brain processes temporal information embedded in sounds is a core question in auditory research. This article synthesizes recent studies from our laboratory regarding neural representations of time-varying signals in auditory cortex and thalamus in awake marmoset monkeys. Findings from these studies show that 1) the primary auditory cortex (A1) uses a temporal representation to encode slowly varying acoustic signals and a firing rate-based representation to encode rapidly changing acoustic signals, 2) the dual temporal-rate representation in A1 represent a progressive transformation from the auditory thalamus, 3) firing rate-based representations in the form of a monotonic rate-code are also found to encode slow temporal repetitions in the range of acoustic flutter in A1 and more prevalently in the cortical fields rostral to A1 in the core region of the marmoset auditory cortex, suggesting further temporal-to-rate transformations in higher cortical areas. These findings indicate that the auditory cortex forms internal representations of temporal characteristic structures. We suggest that such transformations are necessary for the auditory cortex to perform a wide range of functions including sound segmentation, object processing and multi-sensory integration.
Neuroscience | 2002
Edward L. Bartlett; Philip H. Smith
Many behaviorally relevant sounds, including language, are composed of brief, rapid, repetitive acoustic features. Recent studies suggest that abnormalities in producing and understanding spoken language are correlated with abnormal neural responsiveness to such auditory stimuli at higher auditory levels [Tallal et al., Science 271 (1996) 81-84; Wright et al., Nature 387 (1997) 176-178; Nagarajan et al., Proc. Natl. Acad. Sci. USA 96 (1999) 6483-6488] and with abnormal anatomical features in the auditory thalamus [Galaburda et al., Proc. Natl. Acad. Sci. USA 91 (1994) 8010-8013]. To begin to understand potential mechanisms for normal and abnormal transfer of sensory information to the cortex, we recorded the intracellular responses of medial geniculate body thalamocortical neurons in a rat brain slice preparation. Inferior colliculus or corticothalamic axons were excited by pairs or trains of electrical stimuli. Neurons receiving only excitatory collicular input had tufted dendritic morphology and displayed strong paired-pulse depression of their large, short-latency excitatory postsynaptic potentials. In contrast, geniculate neurons receiving excitatory and inhibitory collicular inputs could have stellate or tufted morphology and displayed much weaker depression or even paired-pulse facilitation of their smaller, longer-latency excitatory postsynaptic potentials. Depression was not blocked by ionotropic glutamate, GABA(A) or GABA(B) receptor antagonists. Facilitation was unaffected by GABA(A) receptor antagonists but was diminished by N-methyl-D-aspartate (NMDA) receptor blockade. Similar stimulation of the corticothalamic input always elicited paired-pulse facilitation. The NMDA-independent facilitation of the second cortical excitatory postsynaptic potential lasted longer and was more pronounced than that seen for the excitatory collicular inputs. Paired-pulse stimulation of isolated collicular inhibitory postsynaptic potentials generated little change in the second GABA(A) potential amplitude measured from the resting potential, but the GABA(B) amplitude was sensitive to the interstimulus interval. Train stimuli applied to collicular or cortical inputs generated intra-train responses that were often predicted by their paired-pulse behavior. Long-lasting responses following train stimulation of the collicular inputs were uncommon. In contrast, corticothalamic inputs often generated long-lasting depolarizing responses that were dependent on activation of a metabotropic glutamate receptor. Our results demonstrate that during repetitive afferent firing there are input-specific mechanisms controlling synaptic strength and membrane potential over short and long time scales. Furthermore, they suggest that there may be two classes of excitatory collicular input to medial geniculate neurons and a single class of small-terminal corticothalamic inputs, each of which has distinct features.
Journal of Neurophysiology | 2011
Edward L. Bartlett; Srivatsun Sadagopan; Xiaoqin Wang
The frequency resolution of neurons throughout the ascending auditory pathway is important for understanding how sounds are processed. In many animal studies, the frequency tuning widths are about 1/5th octave wide in auditory nerve fibers and much wider in auditory cortex neurons. Psychophysical studies show that humans are capable of discriminating far finer frequency differences. A recent study suggested that this is perhaps attributable to fine frequency tuning of neurons in human auditory cortex (Bitterman Y, Mukamel R, Malach R, Fried I, Nelken I. Nature 451: 197-201, 2008). We investigated whether such fine frequency tuning was restricted to human auditory cortex by examining the frequency tuning width in the awake common marmoset monkey. We show that 27% of neurons in the primary auditory cortex exhibit frequency tuning that is finer than the typical frequency tuning of the auditory nerve and substantially finer than previously reported cortical data obtained from anesthetized animals. Fine frequency tuning is also present in 76% of neurons of the auditory thalamus in awake marmosets. Frequency tuning was narrower during the sustained response compared to the onset response in auditory cortex neurons but not in thalamic neurons, suggesting that thalamocortical or intracortical dynamics shape time-dependent frequency tuning in cortex. These findings challenge the notion that the fine frequency tuning of auditory cortex is unique to human auditory cortex and that it is a de novo cortical property, suggesting that the broader tuning observed in previous animal studies may arise from the use of anesthesia during physiological recordings or from species differences.
Neuroscience | 2011
Aravindakshan Parthasarathy; Edward L. Bartlett
Older human listeners demonstrate perceptual deficits in temporal processing even when audibility has been controlled. These age-related auditory deficits in temporal processing are thought to originate in the central auditory pathway. Precise temporal processing is necessary to detect and discriminate auditory cues such as modulation frequency, modulation depth and envelope shape which are critical for perception of speech and environmental sounds. This study aims to further understanding of temporal processing in aging using non-invasive electrophysiological measurements. Amplitude modulation following responses (AMFRs) and frequency modulation following responses (FMFRs) were recorded from aged (92-95-weeks old) and young (9-12-weeks old) Fischer-344 (F-344) rats for sinusoidally amplitude modulated (sAM) tones, sinusoidally frequency modulated (sFM) tones and ramped and damped amplitude modulation (AM) stimuli which differ in their envelope shapes. The modulation depth for the sAM and sFM stimuli and envelope shape for the ramped and damped stimuli were systematically varied. There was a monotonic decrease in AMFR and FMFR amplitudes with decreases in modulation depth across age for sAM and sFM stimuli. There was no significant difference between the response amplitudes of the young and aged animals for the largest modulation depths. However, a reduction in modulation depth resulted in a significant decrease in the response amplitudes and higher modulation detection thresholds for sAM and sFM stimuli with age. The aged animals showed significantly lower response amplitudes for ramped stimuli but not for damped stimuli. Cross correlating the responses with the ramped, symmetric, or damped stimulus envelopes revealed a decreased fidelity in encoding envelope shapes with age. These results indicate that age related temporal processing deficits become apparent only with reduced modulation depths or when discriminating envelope shapes. This has implications for psychophysical or diagnostic testing as well as for constraining potential cellular and network mechanisms responsible for these deficits.
Frontiers in Aging Neuroscience | 2010
Aravindakshan Parthasarathy; Paul A. Cunningham; Edward L. Bartlett
Our knowledge of age-related changes in auditory processing in the central auditory system is limited, unlike the changes in the peripheral hearing organs which are more extensively studied. This study aims to further understanding of temporal processing in aging using non-invasive electrophysiological measurements in a rat model system. Amplitude modulation following responses (AMFRs) were assessed using sinusoidally amplitude modulated (SAM) tones presented to aged (92- to 95-weeks old) and young (9- to 12-weeks old) Fischer-344 rats. The modulation frequency and sound level were systematically varied, and the SAM stimuli were also presented simultaneously with wideband background noise at various levels. The overall shapes and cutoff frequencies of the AMFR temporal modulation transfer functions (tMTFs) were similar between young and aged animals. The fast Fourier transform (FFT) amplitudes of the aged animals were similar to the young in the 181–512 Hz modulation frequency range, but were significantly lower at most modulation frequencies above and below. There were no significant age-related differences in the nature of growth or FFT amplitudes with change in sound level at 256 and 1024 Hz modulation frequencies. The AMFR amplitudes were also not correlated with the ABR wave I or wave III amplitudes elicited for broadband click stimuli presented at the same sound level suggesting that sustained AMFR provide complementary information to phasic ABR responses. The FFT amplitudes varied significantly between young and aged animals for SAM stimuli in the presence of background noise, depending on the modulation frequency used and signal to noise ratio. The results show that the representation of temporally modulated stimuli is similar between young and aged animals in quiet listening conditions, but diverges substantially with the addition of background noise. This is consistent with a decrease in inhibition causing altered temporal processing with age.
Journal of Neurophysiology | 2011
Edward L. Bartlett; Xiaoqin Wang
As the information bottleneck of nearly all auditory input that reaches the cortex, the auditory thalamus serves as the basis for establishing auditory cortical processing streams. The functional organization of the primary and nonprimary subdivisions of the auditory thalamus is not well characterized, particularly in awake primates. We have recorded from neurons in the auditory thalamus of awake marmoset monkeys and tested their responses to tones, band-pass noise, and temporally modulated stimuli. We analyzed the spectral and temporal response properties of recorded neurons and correlated those properties with their locations in the auditory thalamus, thereby forming the basis for parallel output channels. Three medial geniculate body (MGB) subdivisions were identified and studied physiologically and anatomically, although other medial subdivisions were also identified anatomically. Neurons in the ventral subdivision (MGV) were sharply tuned for frequency, preferred narrowband stimuli, and were able to synchronize to rapid temporal modulations. Anterodorsal subdivision (MGAD) neurons appeared well suited for temporal processing, responding similarly to tone or noise stimuli but able to synchronize to the highest modulation frequencies and with the highest temporal precision among MGB subdivisions. Posterodorsal subdivision (MGPD) neurons differed substantially from the other two subdivisions, with many neurons preferring broadband stimuli and signaling changes in modulation frequency with nonsynchronized changes in firing rate. Most neurons in all subdivisions responded to increases in tone sound level with nonmonotonic changes in firing rate. MGV and MGAD neurons exhibited responses consistent with provision of thalamocortical input to core regions, whereas MGPD neurons were consistent with provision of input to belt regions.