Edward M. Edmondson
University of Portsmouth
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward M. Edmondson.
Monthly Notices of the Royal Astronomical Society | 2009
Steven P. Bamford; Robert C. Nichol; Ivan K. Baldry; Kate Land; Chris Lintott; Kevin Schawinski; Anze Slosar; Alexander S. Szalay; Daniel Thomas; Mehri Torki; Dan Andreescu; Edward M. Edmondson; Christopher J. Miller; Phil Murray; M. Jordan Raddick; Jan Vandenberg
We analyse the relationships between galaxy morphology, colour, environment and stellar mass using data for over 105 objects from Galaxy Zoo, the largest sample of visually classified morphologies yet compiled. We conclusively show that colour and morphology fractions are very different functions of environment. Both colour and morphology are sensitive to stellar mass. However, at fixed stellar mass, while colour is also highly sensitive to environment, morphology displays much weaker environmental trends. Only a small part of both the morphology–density and colour–density relations can be attributed to the variation in the stellar-mass function with environment. Galaxies with high stellar masses are mostly red in all environments and irrespective of their morphology. Low stellar-mass galaxies are mostly blue in low-density environments, but mostly red in high-density environments, again irrespective of their morphology. While galaxies with early-type morphology do always have higher red fractions, this is subdominant compared to the dependence of red fraction on stellar mass and environment. The colour–density relation is primarily driven by variations in colour fractions at fixed morphology, in particular the fraction of spiral galaxies that have red colours, and especially at low stellar masses. We demonstrate that our red spirals primarily include galaxies with true spiral morphology, and that they constitute an additional population to the S0 galaxies considered by previous studies. We clearly show there is an environmental dependence for colour beyond that for morphology. The environmental transformation of galaxies from blue to red must occur on significantly shorter time-scales than the transformation from spiral to early-type. We also present many of our results as functions of the distance to the nearest galaxy group. This confirms that the environmental trends we present are not specific to the manner in which environment is quantified, but nevertheless provides plain evidence for an environmental process at work in groups. However, the properties of group members show little dependence on the total mass of the group they inhabit, at least for group masses ≳1013M⊙. Before using the Galaxy Zoo morphologies to produce the above results, we first quantify a luminosity-, size- and redshift-dependent classification bias that affects this data set, and probably most other studies of galaxy population morphology. A correction for this bias is derived and applied to produce a sample of galaxies with reliable morphological-type likelihoods, on which we base our analysis.
Monthly Notices of the Royal Astronomical Society | 2009
Ramin A. Skibba; Steven P. Bamford; Robert C. Nichol; Chris Lintott; Dan Andreescu; Edward M. Edmondson; Phil Murray; M. Jordan Raddick; Kevin Schawinski; Anÿze Slosar; Alexander S. Szalay; Daniel Thomas; Jan Vandenberg
We analyze the environmental dependence of galaxy morphology and colour with two-point clustering statistics, using data from the Galaxy Zoo, the largest sample of visually classified morphologies yet compiled, extracted from the Sloan Digital Sky Survey. We present two-point correlation functions of spiral and early-type galaxies, and we quantify the correlation between morphology and environment with marked correlation functions. These yield clear and precise environmental trends across a wide range of scales, analogous to similar measurements with galaxy colours, indicating that the Galaxy Zoo classifications themselves are very precise. We measure morphology marked correlation functions at fixed colour and find that they are relatively weak, with the only residual correlation being that of red galaxies at small scales, indicating a morphology gradient within haloes for red galaxies. At fixed morphology, we find that the environmental dependence of colour remains strong, and these correlations remain for fixed morphology and luminosity. An implication of this is that much of the morphology–density relation is due to the relation between colour and density. Our results also have implications for galaxy evolution: the morphological transformation of galaxies is usually accompanied by a colour transformation, but not necessarily vice versa. A spiral galaxy may move onto the red sequence of the colour-magnitude diagram without quickly becoming an early-type. We analyze the significant population of red spiral galaxies, and present evidence that they tend to be located in moderately dense environments and are often satellite galaxies in the outskirts of haloes. Finally, we combine our results to argue that central and satellite galaxies tend to follow different evolutionary paths.
Monthly Notices of the Royal Astronomical Society | 2010
Karen L. Masters; Moein Mosleh; A. Kathy Romer; Robert C. Nichol; Steven P. Bamford; Kevin Schawinski; Chris Lintott; Dan Andreescu; Heather Campbell; Ben Crowcroft; Isabelle Doyle; Edward M. Edmondson; Phil Murray; M. Jordan Raddick; Anÿze Slosar; Alexander S. Szalay; Jan Vandenberg
We study the spectroscopic properties and environments of red (or passive) spiral galaxies found by the Galaxy Zoo project. By carefully selecting face-on disc-dominated spirals, we construct a sample of truly passive discs (i.e. they are not dust reddened spirals, nor are they dominated by old stellar populations in a bulge). As such, our red spirals represent an interesting set of possible transition objects between normal blue spiral galaxies and red early types, making up ∼6 per cent of late-type spirals. We use optical images and spectra from Sloan Digital Sky Survey to investigate the physical processes which could have turned these objects red without disturbing their morphology. We find red spirals preferentially in intermediate density regimes. However, there are no obvious correlations between red spiral properties and environment suggesting that environment alone is not sufficient to determine whether a galaxy will become a red spiral. Red spirals are a very small fraction of all spirals at low masses (M★ < 1010 M⊙), but are a significant fraction of the spiral population at large stellar masses showing that massive galaxies are red independent of morphology. We confirm that as expected, red spirals have older stellar populations and less recent star formation than the main spiral population. While the presence of spiral arms suggests that a major star formation could not have ceased a long ago (not more than a few Gyr), we show that these are also not recent post-starburst objects (having had no significant star formation in the last Gyr), so star formation must have ceased gradually. Intriguingly, red spirals are roughly four times as likely than the normal spiral population to host optically identified Seyfert/low-ionization nuclear emission region (LINER; at a given stellar mass and even accounting for low-luminosity lines hidden by star formation), with most of the difference coming from the objects with LINER-like emission. We also find a curiously large optical bar fraction in the red spirals (70 ± 5 verses 27 ± 5 per cent in blue spirals) suggesting that the cessation of star formation and bar instabilities in spirals are strongly correlated. We conclude by discussing the possible origins of these red spirals. We suggest that they may represent the very oldest spiral galaxies which have already used up their reserves of gas – probably aided by strangulation or starvation, and perhaps also by the effect of bar instabilities moving material around in the disc. We provide an online table listing our full sample of red spirals along with the normal/blue spirals used for comparison.
Monthly Notices of the Royal Astronomical Society | 2013
Kyle W. Willett; Chris J. Lintott; Steven P. Bamford; Karen L. Masters; Brooke Simmons; Kevin R. V. Casteels; Edward M. Edmondson; L. Fortson; Sugata Kaviraj; William C. Keel; Thomas Melvin; Robert C. Nichol; M. Jordan Raddick; Kevin Schawinski; Robert J. Simpson; Ramin A. Skibba; Arfon M. Smith; Daniel Thomas
We present the data release for Galaxy Zoo 2 (GZ2), a citizen science project with more than 16 million morphological classifications of 304 122 galaxies drawn from the Sloan Digital Sky Survey (SDSS). Morphology is a powerful probe for quantifying a galaxys dynamical history; however, automatic classifications of morphology (either by computer analysis of images or by using other physical parameters as proxies) still have drawbacks when compared to visual inspection. The large number of images available in current surveys makes visual inspection of each galaxy impractical for individual astronomers. GZ2 uses classifications from volunteer citizen scientists to measure morphologies for all galaxies in the DR7 Legacy survey with mr > 17, in addition to deeper images from SDSS Stripe 82. While the original GZ2 project identified galaxies as early-types, late-types or mergers, GZ2 measures finer morphological features. These include bars, bulges and the shapes of edge-on disks, as well as quantifying the relative strengths of galactic bulges and spiral arms. This paper presents the full public data release for the project, including measures of accuracy and bias. The majority (≳90 per cent) of GZ2 classifications agree with those made by professional astronomers, especially for morphological T-types, strong bars and arm curvature. Both the raw and reduced data products can be obtained in electronic format at http://data.galaxyzoo.org.
Monthly Notices of the Royal Astronomical Society | 2011
Karen L. Masters; Robert C. Nichol; Ben Hoyle; Chris Lintott; Steven P. Bamford; Edward M. Edmondson; L. Fortson; William C. Keel; Kevin Schawinski; Arfon M. Smith; Daniel Thomas
We present first results from Galaxy Zoo 2, the second phase of the highly successful Galaxy Zoo project (http://www.galaxyzoo.org). Using a volume-limited sample of 13 665 disc galaxies (0.01 < z < 0.06 and Mr < −19.38), we study the fraction of galaxies with bars as a function of global galaxy properties like colour, luminosity and bulge prominence. Overall, 29.4 ± 0.5 per cent of galaxies in our sample have a bar, in excellent agreement with previous visually classified samples of galaxies (although this overall fraction is lower than that measured by automated bar-finding methods). We see a clear increase in the bar fraction with redder (g−r) colours, decreased luminosity and in galaxies with more prominent bulges, to the extent that over half of the red, bulge-dominated disc galaxies in our sample possess a bar. We see evidence for a colour bimodality for our sample of disc galaxies, with a ‘red sequence’ that is both bulge and bar dominated, and a ‘blue cloud’ which has little, or no, evidence for a (classical) bulge or bar. These results are consistent with similar trends for barred galaxies seen recently both locally and at higher redshift, and with early studies using the RC3. We discuss these results in the context of internal (secular) galaxy evolution scenarios and the possible links to the formation of bars and bulges in disc galaxies.
Monthly Notices of the Royal Astronomical Society | 2009
Chris Lintott; Kevin Schawinski; William C. Keel; Hanny van Arkel; Nicola Bennert; Edward M. Edmondson; Daniel Thomas; Dan Smith; Peter D. Herbert; M. J. Jarvis; Shanil N. Virani; Dan Andreescu; Steven P. Bamford; Kate Land; Phil Murray; Robert C. Nichol; M. Jordan Raddick; Anže Slosar; Alexander S. Szalay; Jan Vandenberg
We report the discovery of an unusual object near the spiral galaxy IC 2497, discovered by visual inspection of the Sloan Digital Sky Survey (SDSS) as part of the Galaxy Zoo project. The object, known as Hanny’s Voorwerp, is bright in the SDSS g band due to unusually strong [O III]4959, 5007 emission lines. We present the results of the first targeted observations of the object in the optical, ultraviolet and X-ray, which show that the object contains highly ionized gas. Although the line ratios are similar to extended emission-line regions near luminous active galactic nucleus (AGN), the source of this ionization is not apparent. The emission-line properties, and lack of X-ray emission from IC 2497, suggest either a highly obscured AGN with a novel geometry arranged to allow photoionization of the object but not the galaxy’s own circumnuclear gas, or, as we argue, the first detection of a quasar light echo. In this case, either the luminosity of the central source has decreased dramatically or else the obscuration in the system has increased within 10 5 yr. This object may thus represent the first direct probe
Monthly Notices of the Royal Astronomical Society | 2012
Ramin A. Skibba; Karen L. Masters; Robert C. Nichol; Idit Zehavi; Ben Hoyle; Edward M. Edmondson; Steven P. Bamford; Carolin N. Cardamone; William C. Keel; Chris Lintott; Kevin Schawinski
We present an analysis of the environmental dependence of bars and bulges in disc galaxies, using a volume-limited catalogue of 15 810 galaxies at z < 0.06 from the Sloan Digital Sky Survey with visual morphologies from the Galaxy Zoo 2 project. We find that the likelihood of having a bar, or bulge, in disc galaxies increases when the galaxies have redder (optical) colours and larger stellar masses, and observe a transition in the bar and bulge likelihoods at M∗ = 2 × 10 10 M� , such that massive disc galaxies are more likely to host bars and bulges. In addition, while some barred and most bulge-dominated galaxies are on the ‘red sequence’ of the colour–magnitude diagram, we see a wider variety of colours for galaxies that host bars. We use galaxy clustering methods to demonstrate statistically significant environmental correlations of barred, and bulge-dominated, galaxies, from projected separations of 150 kpch −1 to 3 Mpch −1 . These environmental correlations appear to be independent of each other: i.e. bulge-dominated disc galaxies exhibit a significant bar–environment correlation, and barred disc galaxies show a bulge–environment correlation. As a result of sparse sampling tests – our sample is nearly 20 times larger than those used previously – we argue that previous studies that did not detect a bar–environment correlation were likely inhibited by small number statistics. We demonstrate that approximately half of the bar–environment correlation can be explained by the fact that more massive dark matter haloes host redder disc galaxies, which are then more likely to have bars; this fraction is estimated to be 50 ± 10 per cent from a mock catalogue analysis and 60 ± 5 per cent from the data. Likewise, we show that the environmental dependence of stellar mass can only explain a smaller fraction (25 ± 10 per cent) of the bar–environment correlation. Therefore, a significant fraction of our observed environmental dependence of barred galaxies is not due to colour or stellar mass dependences, and hence must be due to another galaxy property, such as gas content, or to environmental influences.
The Astrophysical Journal | 2010
Kevin Schawinski; Nathan Dowlin; Daniel Thomas; C. Megan Urry; Edward M. Edmondson
Models of galaxy formation invoke the major merger of gas-rich progenitor galaxies as the trigger for significant phases of black hole growth and the associated feedback that suppresses star formation to create red spheroidal remnants. However, the observational evidence for the connection between mergers and active galactic nucleus (AGN) phases is not clear. We analyze a sample of low-mass early-type galaxies known to be in the process of migrating from the blue cloud to the red sequence via an AGN phase in the green valley. Using deeper imaging from Sloan Digital Sky Survey Stripe 82, we show that the fraction of objects with major morphological disturbances is high during the early starburst phase, but declines rapidly to the background level seen in quiescent early-type galaxies by the time of substantial AGN radiation several hundred Myr after the starburst. This observation empirically links the AGN activity in low-redshift early-type galaxies to a significant merger event in the recent past. The large time delay between the merger-driven starburst and the peak of AGN activity allows for the merger features to decay to the background and hence may explain the weak link between merger features and AGN activity in the literature.
Monthly Notices of the Royal Astronomical Society | 2011
Karen L. Masters; Claudia Maraston; Robert C. Nichol; Daniel Thomas; A. Beifiori; Kevin Bundy; Edward M. Edmondson; Tim D. Higgs; Alexie Leauthaud; Rachel Mandelbaum; Janine Pforr; A. Ross; Nicholas P. Ross; Donald P. Schneider; Ramin A. Skibba; Jeremy L. Tinker; Rita Tojeiro; David A. Wake; J. Brinkmann; Benjamin A. Weaver
We study the morphology and size of the luminous and massive galaxies at 0.3 2.35 is able to select a sub-sample of BOSS galaxies with ≥90 per cent early-type morphology and thus more comparable to the earlier Luminous Red Galaxy (LRG) samples of Sloan Digital Sky Survey (SDSS)-I/II. The remaining ≃10 per cent of galaxies above this (g−i) cut have a late-type morphology and may be analogous to the ‘passive spirals’ found at lower redshift. We find that 23 ± 4 per cent of the early-type BOSS galaxies are unresolved multiple systems in the SDSS imaging. We estimate that at least 50 per cent of these multiples are likely real associations and not projection effects and may represent a significant ‘dry merger’ fraction. We study the SDSS pipeline sizes of BOSS galaxies which we find to be systematically larger (by 40 per cent) than those measured from HST images, and provide a statistical correction for the difference. These details of the BOSS galaxies will help users of the BOSS data fine-tune their selection criteria, dependent on their science applications. For example, the main goal of BOSS is to measure the cosmic distance scale and expansion rate of the Universe to per cent level precision – a point where systematic effects due to the details of target selection may become important.
Monthly Notices of the Royal Astronomical Society | 2014
Thomas Melvin; Karen L. Masters; Chris Lintott; Robert C. Nichol; Brooke Simmons; Steven P. Bamford; Kevin R. V. Casteels; Edmond Cheung; Edward M. Edmondson; L. Fortson; Kevin Schawinski; Ramin A. Skibba; Arfon M. Smith; Kyle W. Willett
We measure the redshift evolution of the bar fraction in a sample of 2380 visually selected disc galaxies found in Cosmic Evolution Survey (COSMOS) Hubble Space Telescope (HST ) images. The visual classications used both to identify the disc sample and to indicate the presence of stellar bars were provided by citizen scientists via the Galaxy Zoo: Hubble (GZH) project. We nd that the overall bar fraction decreases by a factor of 2, from 22 5% at z = 0:4 (tlb = 4:2 Gyr) to 11 2% at z = 1:0 (tlb = 7:8 Gyr), consistent with previous analysis. We show that this decrease, of the strong bar fraction in a volume limited sample of massive disc galaxies [stellar mass limit of log(M?=M ) 10:0], cannot be due to redshift-dependent biases hiding either bars or disc galaxies at higher redshifts. Splitting our sample into three bins of mass we nd that the decrease in bar fraction is most prominent in the highest mass bin, while the lower mass discs in our sample show a more modest evolution. We also include a sample of 98 red disc galaxies. These galaxies have a high bar fraction (45 5%), and are missing from other COSMOS samples which used SED tting or colours to identify high redshift discs. Our results are consistent with a picture in which the evolution of massive disc galaxies begins to be aected by slow (secular) internal process at z 1. We discuss possible connections of the decrease in bar fraction to the redshift, including the growth of stable disc galaxies, mass evolution of the gas content in disc galaxies, as well as the mass-dependent eects of tidal interactions.