Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward M. Scolnick is active.

Publication


Featured researches published by Edward M. Scolnick.


Nature | 2009

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

Shaun Purcell; Naomi R. Wray; Jennifer Stone; Peter M. Visscher; Michael Conlon O'Donovan; Patrick F. Sullivan; Pamela Sklar; Douglas M. Ruderfer; Andrew McQuillin; Derek W. Morris; Colm O’Dushlaine; Aiden Corvin; Peter Holmans; Michael C. O’Donovan; Stuart MacGregor; Hugh Gurling; Douglas Blackwood; Nicholas John Craddock; Michael Gill; Christina M. Hultman; George Kirov; Paul Lichtenstein; Walter J. Muir; Michael John Owen; Carlos N. Pato; Edward M. Scolnick; David St Clair; Nigel Melville Williams; Lyudmila Georgieva; Ivan Nikolov

Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%. We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.


Nature | 2008

Rare chromosomal deletions and duplications increase risk of schizophrenia

Jennifer Stone; Michael C. O’Donovan; Hugh Gurling; George Kirov; Douglas Blackwood; Aiden Corvin; Nicholas John Craddock; Michael Gill; Christina M. Hultman; Paul Lichtenstein; Andrew McQuillin; Carlos N. Pato; Douglas M. Ruderfer; Michael John Owen; David St Clair; Patrick F. Sullivan; Pamela Sklar; Shaun Purcell; Joshua M. Korn; Stuart Macgregor; Derek W. Morris; Colm O’Dushlaine; Mark J. Daly; Peter M. Visscher; Peter Holmans; Edward M. Scolnick; Nigel Melville Williams; Lucy Georgieva; Ivan Nikolov; Nadine Norton

Schizophrenia is a severe mental disorder marked by hallucinations, delusions, cognitive deficits and apathy, with a heritability estimated at 73–90% (ref. 1). Inheritance patterns are complex, and the number and type of genetic variants involved are not understood. Copy number variants (CNVs) have been identified in individual patients with schizophrenia and also in neurodevelopmental disorders, but large-scale genome-wide surveys have not been performed. Here we report a genome-wide survey of rare CNVs in 3,391 patients with schizophrenia and 3,181 ancestrally matched controls, using high-density microarrays. For CNVs that were observed in less than 1% of the sample and were more than 100 kilobases in length, the total burden is increased 1.15-fold in patients with schizophrenia in comparison with controls. This effect was more pronounced for rarer, single-occurrence CNVs and for those that involved genes as opposed to those that did not. As expected, deletions were found within the region critical for velo-cardio-facial syndrome, which includes psychotic symptoms in 30% of patients. Associations with schizophrenia were also found for large deletions on chromosome 15q13.3 and 1q21.1. These associations have not previously been reported, and they remained significant after genome-wide correction. Our results provide strong support for a model of schizophrenia pathogenesis that includes the effects of multiple rare structural variants, both genome-wide and at specific loci.


Nature Genetics | 2008

Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder

Manuel A. Ferreira; Michael Conlon O'Donovan; Ian Richard Jones; Douglas M. Ruderfer; Lisa Jones; Jinbo Fan; George Kirov; Roy H. Perlis; Elaine K. Green; Jordan W. Smoller; Detelina Grozeva; Jennifer Stone; Ivan Nikolov; Marian Lindsay Hamshere; Vishwajit L. Nimgaonkar; Valentina Moskvina; Michael E. Thase; Sian Caesar; Gary S. Sachs; Jennifer Franklin; Katherine Gordon-Smith; Kristin Ardlie; Stacey Gabriel; Christine Fraser; Brendan Blumenstiel; Matthew DeFelice; Gerome Breen; Michael Gill; Derek W. Morris; Amanda Elkin

To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 × 10−9) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 × 10−8, rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.


Nature | 2014

De novo mutations in schizophrenia implicate synaptic networks

Menachem Fromer; Andrew Pocklington; David H. Kavanagh; Hywel Williams; Sarah Dwyer; Padhraig Gormley; Lyudmila Georgieva; Elliott Rees; Priit Palta; Douglas M. Ruderfer; Noa Carrera; Isla Humphreys; Jessica S. Johnson; Panos Roussos; Douglas D. Barker; Eric Banks; Vihra Milanova; Seth G. N. Grant; Eilis Hannon; Samuel A. Rose; K D Chambert; Milind Mahajan; Edward M. Scolnick; Jennifer L. Moran; George Kirov; Aarno Palotie; Steven A. McCarroll; Peter Holmans; Pamela Sklar; Michael John Owen

Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case–control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.


Nature | 2014

A polygenic burden of rare disruptive mutations in schizophrenia

Shaun Purcell; Jennifer L. Moran; Menachem Fromer; Douglas M. Ruderfer; Nadia Solovieff; Panos Roussos; Colm O'Dushlaine; K D Chambert; Sarah E. Bergen; Anna K. Kähler; Laramie Duncan; Eli A. Stahl; Giulio Genovese; Esperanza Fernández; Mark O. Collins; Noboru H. Komiyama; Jyoti S. Choudhary; Patrik K. E. Magnusson; Eric Banks; Khalid Shakir; Kiran Garimella; Timothy Fennell; Mark DePristo; Seth G. N. Grant; Stephen J. Haggarty; Stacey Gabriel; Edward M. Scolnick; Eric S. Lander; Christina M. Hultman; Patrick F. Sullivan

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.


Molecular Psychiatry | 2008

Whole-genome association study of bipolar disorder

Pamela Sklar; Jordan W. Smoller; Jinbo Fan; Manuel A. Ferreira; Roy H. Perlis; Vishwajit L. Nimgaonkar; Matthew B. McQueen; Stephen V. Faraone; Andrew Kirby; P. I. W. de Bakker; Matthew N. Ogdie; Michael E. Thase; Gary S. Sachs; Katherine E. O. Todd-Brown; Stacey Gabriel; Carrie Sougnez; Casey Gates; Brendan Blumenstiel; Matthew DeFelice; Kristin Ardlie; J Franklin; Walter J. Muir; Kevin A. McGhee; Donald J. MacIntyre; Alan W. McLean; M VanBeck; Andrew McQuillin; Nick Bass; Matthew Robinson; Jacob Lawrence

We performed a genome-wide association scan in 1461 patients with bipolar (BP) 1 disorder, 2008 controls drawn from the Systematic Treatment Enhancement Program for Bipolar Disorder and the University College London sample collections with successful genotyping for 372 193 single nucleotide polymorphisms (SNPs). Our strongest single SNP results are found in myosin5B (MYO5B; P=1.66 × 10−7) and tetraspanin-8 (TSPAN8; P=6.11 × 10−7). Haplotype analysis further supported single SNP results highlighting MYO5B, TSPAN8 and the epidermal growth factor receptor (MYO5B; P=2.04 × 10−8, TSPAN8; P=7.57 × 10−7 and EGFR; P=8.36 × 10−8). For replication, we genotyped 304 SNPs in family-based NIMH samples (n=409 trios) and University of Edinburgh case–control samples (n=365 cases, 351 controls) that did not provide independent replication after correction for multiple testing. A comparison of our strongest associations with the genome-wide scan of 1868 patients with BP disorder and 2938 controls who completed the scan as part of the Wellcome Trust Case–Control Consortium indicates concordant signals for SNPs within the voltage-dependent calcium channel, L-type, alpha 1C subunit (CACNA1C) gene. Given the heritability of BP disorder, the lack of agreement between studies emphasizes that susceptibility alleles are likely to be modest in effect size and require even larger samples for detection.


Nature | 1988

Cloning of bovine GAP and its interaction with oncogenic ras p21

Ursula S. Vogel; Richard A. Dixon; Michael D. Schaber; Ronald E. Diehl; Mark S. Marshall; Edward M. Scolnick; Irving S. Sigal; Jackson B. Gibbs

The plasma membrane-bound mammalian ras proteins of relative molecular mass 21,000 (ras p21) share biochemical and structural properties with other guanine nucleotide-binding regulatory proteins (G-proteins)1–3. Oncogenic ras p21 variants result from amino acid substitutions at specific positions that cause p21 to occur predominantly complexed to GTP in vivo. Recently, a GTPase activating protein (GAP) with cytosolic activity has been discovered that stimulates the GTPase activity of normal but not of oncogenic ras p21 (ref. 4). GAP might be either a negative regulatory agent which acts further upstream in the regulatory pathway or the downstream target of ras p21 (refs 3, 5 and 6). We have identified a protein from bovine brain with apparent relative molecular mass 125,000 that has GAP activity7. Here, using pure GAP in a kinetic competition assay, we show that GAP interacts preferentially with the active GTP complexes of both normal and oncogenic Harvey (Ha) ras p21 compared with the inactive GDP complexes. We also report the cloning and sequencing of the complementary DNA for bovine GAP. Regions of GAP share amino acid similarity with the noncatalytic domain of adenylate cyclase from the yeast Saccharomyces cerevisiae8–10 and with regions conserved between phospholipase C-148, the crk oncogene product and the nonreceptor tyrosine kinases26,27.


The New England Journal of Medicine | 1984

Live attenuated varicella virus vaccine. Efficacy trial in healthy children.

Robert E. Weibel; Beverly J. Neff; Barbara J. Kuter; Harry A. Guess; Carol A. Rothenberger; Alison J. Fitzgerald; Karen Connor; Arlene A. McLean; Maurice R. Hilleman; Eugene B. Buynak; Edward M. Scolnick

We conducted a double-blind, placebo-controlled efficacy trial of the live attenuated Oka/Merck varicella vaccine among 956 children between the ages of 1 and 14 years, with a negative clinical history of varicella. Of the 914 children who were serologically confirmed to be susceptible to varicella, 468 received vaccine and 446 received placebo. The vaccine produced few clinical reactions and was well tolerated. There was no clinical evidence of viral spread from vaccinated children to sibling controls. Approximately eight weeks after vaccination, 94 per cent of the initially seronegative children who received vaccine had detectable antibody to varicella. During the nine-month surveillance period, 39 clinically diagnosed cases of varicella, 38 of which were confirmed by laboratory tests, occurred among study participants. All 39 cases occurred in placebo recipients; no child who received vaccine contracted varicella. The vaccine was 100 per cent efficacious in preventing varicella in this population of healthy children (P less than 10(-9).


Cell | 1980

Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry

Mark C. Willingham; Ira Pastan; Thomas Y. Shih; Edward M. Scolnick

Using electron microscopic immunocytochemistry, we have investigated the intracellular location of the src protein (p21) in cells transformed by the Harvey strain of Murine Sarcoma Virus (Ha-MSV). Antibodies to p21 were derived from tumor-bearing rats inoculated with Ha-NRK cells. The distribution of p21 in intracellular sites in MDCK dog cells transformed by Ha-MSV was examined and quantified using a recently developed immunocytochemical technique. More than 95% of p21 was localized to the inner surface of the plasma membrane in these Ha-MSV-transformed cells; p21 was not exposed on the outside surface of the plasma membrane. A similar location was observed by immunofluorescence in other Ha-MSV-transformed cell lines, including cells derived from rat, mouse and mink. This finding, and the previous demonstration that p60src of avian sarcoma virus is concentrated on the inner surface of the plasma membrane, suggests that the plasma membrane is a major site of action for transforming proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2003

N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity

Cyrille Sur; Pierre J. Mallorga; Marion Wittmann; Marlene A. Jacobson; Danette Pascarella; Jacinta B. Williams; Philip E. Brandish; Douglas J. Pettibone; Edward M. Scolnick; P. Jeffrey Conn

The molecular and neuronal substrates conferring on clozapine its unique and superior efficacy in the treatment of schizophrenia remain elusive. The interaction of clozapine with many G protein-coupled receptors is well documented but less is known about its biologically active metabolite, N-desmethylclozapine. Recent clinical and preclinical evidences of the antipsychotic activity of the muscarinic agonist xanomeline prompted us to investigate the effects of N-desmethylclozapine on cloned human M1-M5 muscarinic receptors. N-desmethylclozapine preferentially bound to M1 muscarinic receptors with an IC50 of 55 nM and was a more potent partial agonist (EC50, 115 nM and 50% of acetylcholine response) at this receptor than clozapine. Furthermore, pharmacological and site-directed mutagenesis studies suggested that N-desmethylclozapine preferentially activated M1 receptors by interacting with a site that does not fully overlap with the acetylcholine orthosteric site. As hypofunction of N-methyl-d-aspartate (NMDA) receptor-driven neuronal ensembles has been implicated in psychotic disorders, the neuronal activity of N-desmethylclozapine was electrophysiologically investigated in hippocampal rat brain slices. N-desmethylclozapine was shown to dose-dependently potentiate NMDA receptor currents in CA1 pyramidal cells by 53% at 100 nM, an effect largely mediated by activation of muscarinic receptors. Altogether, our observations provide direct evidence that the brain penetrant metabolite N-desmethylclozapine is a potent, allosteric agonist at human M1 receptors and is able to potentiate hippocampal NMDA receptor currents through M1 receptor activation. These observations raise the possibility that N-desmethylclozapine contributes to clozapines clinical activity in schizophrenics through modulation of both muscarinic and glutamatergic neurotransmission.

Collaboration


Dive into the Edward M. Scolnick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Y. Shih

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sandra Ruscetti

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Howard A. Young

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stuart A. Aaronson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

George J. Todaro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

D H Troxler

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge