Edward M. Steadham
Iowa State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward M. Steadham.
Comparative Immunology Microbiology and Infectious Diseases | 2003
Jesse M. Hostetter; Edward M. Steadham; Joseph S. Haynes; T. B. Bailey; Norman F. Cheville
The mechanisms by which Mycobacterium avium subspecies paratuberculosis (M. a. ptb) survives within macrophages are not well characterized. One strategy for intracellular survival developed by Mycobacterium tuberculosis is inhibition of phagosomal maturation. In this study it was hypothesized that M. a. ptb is capable of survival within macrophages by residing within a phagosomal compartment that does not mature into a functional phagolysosome. To test this hypothesis the following objectives were determined. Phagosomal maturation was evaluated by comparison of stage specific markers on the membranes of phagosomes containing live M. a. ptb with those containing killed M. a. ptb, Mycobacterium smegmatis, and zymosan A using immunofluorescent labeling and confocal microscopy. Intracellular survival of live M. a. ptb within J774 macrophages was compared to that of M. smegmatis by direct determination of bacterial viability by differential live/dead staining. The results of this study show that the phagosomes containing live M. a. ptb had increased levels of an early marker (transferrin receptor [TFR]) and decreased levels of a late maturation marker (lysosome associated membrane protein one [Lamp-1]), relative to those containing killed M. a. ptb, M. smegmatis, and zymosan A. Additionally, compared to M. smegmatis, M. a. ptb has enhanced ability to survive within cultured macrophages. These data indicate that M. a. ptb resists intracellular killing by residing within a phagosomal compartment that retains the characteristics of early phagosomes and resists maturation into functional phagolysosome.
Journal of Animal Science | 2017
Kelsey Carlson; Kenneth J. Prusa; C.A. Fedler; Edward M. Steadham; Amanda C. Outhouse; D. A. King; Elisabeth J. Huff-Lonergan; Steven M. Lonergan
The objective of this study was to determine factors that influence tenderness independent of variation in pH, color, or marbling. To achieve the objective, 2 sample groups were chosen from a population of 159 pork loins aged 11 to 16 d. Predetermined ranges (ultimate pH, 5.54 to 5.86; marbling score, 1.0 to 3.0; percent total lipid, 1.61 to 3.37%) were defined for inclusion of individual loins in the study. The pork loins with the greatest ( = 12) and least ( = 12) Instron star probe values were assigned to 2 classification groups. The high star probe group had an average star probe that was 2.8 kg greater than the low star probe group (7.75 vs. 4.95 kg). Pork quality and sensory characteristics of pH, subjective and instrumental color values, cook loss, sensory tenderness, chewiness, juiciness, pork flavor, and off flavor were determined on fresh, never frozen pork chops. Lipid content, sarcomere length, myosin heavy-chain profile, and calpain autolysis were determined. Degradation of troponin-T, desmin, filamin, and titin were evaluated on the protein extracts from each sample. Pork loin pH, subjective color scores, Minolta L values, sarcomere length, and myosin heavy-chain composition were not different across groups. Chops from the low star probe group had a significantly greater marbling score (2.3 vs. 1.9) and lipid content (2.61 vs. 2.23%). Calpain-1 was completely autolyzed in both high and low star probe samples, demonstrating that calpain-1 potentially had been active in all samples. Low star probe whole-muscle protein extracts had more troponin-T ( < 0.01), desmin ( < 0.01), and filamin degradation ( < 0.01) than high star probe samples. Both classification groups showed degradation of titin. Remarkably, some high star probe samples still had observable intact bands of titin on SDS-PAGE gels. These results demonstrate that significant variation in instrumental tenderness is observed within a moderate pH range. Lipid content and proteolysis both appear to contribute to this variation.
Food Chemistry | 2019
Rui Liu; Steven M. Lonergan; Edward M. Steadham; Guanghong Zhou; Wangang Zhang; Elisabeth J. Huff-Lonergan
This study was designed to investigate the nature of modification of myofibrillar proteins by nitric oxide (NO) and the extent to which S-nitrosylation alters their susceptibility to calpain-1 proteolysis. Isolated myofibrils from porcine semimembranosus muscle were incubated with the NO donor S-nitrosoglutathione (GSNO) at 0, 20, 50, 250, 1000 µM for 30 min at 37 °C and then incubated with purified calpain-1. GSNO treatment decreased the thiol content of myofibrillar proteins and increased their intensity and amount of S-nitrosylation. GSNO caused the formation of proteins cross-linkage through intermolecular disulfide. More desmin and titin (T2, the degraded fragment of original titin) were degraded by calpain-1 when myofibrils were incubated with 1000 µM GSNO. Incubation with 250 and 1000 µM GSNO suppressed calpain-1-catalyzed cleavage of troponin-T. The data suggest that NO could change the redox state of myofibrillar proteins and subsequently affect the extent of proteolysis by calpain-1 in a protein-dependent manner.
Food Chemistry | 2019
Rui Liu; Steven M. Lonergan; Edward M. Steadham; Guanghong Zhou; Wangang Zhang; Elisabeth J. Huff-Lonergan
The aim of this study was to investigate the dual effect of the nitric oxide donor NOR-3 and calpastatin on µ-calpain activity, autolysis, and proteolytic ability. µ-Calpain and calpastatin were purified and allocated to the following five treatments: µ-calpain, µ-calpain + calpastatin, µ-calpain + NOR-3, µ-calpain + calpastatin + NOR-3, and µ-calpain + NOR-3 + calpastatin. µ-Calpain autolysis and the activity against purified myofibrils was initiated by addition of calcium. Results showed that NOR-3 could induce µ-calpain S-nitrosylation and effectively block the activity via the inhibition of µ-calpain autolysis. Calpastatin inhibited µ-calpain activity in a dose-dependent manner. The combined treatment of NOR-3 and calpastatin exerted a further inhibitory effect on µ-calpain activity, autolysis and proteolysis which was affected by the addition order of NOR-3 and calpastatin. Our data suggest that S-nitrosylation may play a regulatory role in mediating µ-calpain activity in the presence of calpastatin.
Fems Immunology and Medical Microbiology | 2002
Jesse M. Hostetter; Edward M. Steadham; Joseph S. Haynes; T. B. Bailey; Norman F. Cheville
Deutsche Tierarztliche Wochenschrift | 2001
Norman F. Cheville; Jesse M. Hostetter; Thomsen Bv; Simutis F; Vanloubbeeck Y; Edward M. Steadham
Journal of Animal Science | 2017
Kelsey Carlson; Kenneth J. Prusa; C.A. Fedler; Edward M. Steadham; Elisabeth J. Huff-Lonergan; Steven M. Lonergan
Animal Industry Report | 2015
Aaron M. Blakely; Edward M. Steadham; Kenneth J. Prusa; C.A. Fedler; Elisabeth J. Huff-Lonergan; Steven M. Lonergan
Animal Industry Report | 2015
Aaron M. Blakely; Edward M. Steadham; Kenneth J. Prusa; C.A. Fedler; Elisabeth J. Huff-Lonergan; Steven M. Lonergan
Animal Industry Report | 2009
Mark J. Anderson; Edward M. Steadham; C.A. Fedler; Kenneth J. Prusa; Steven M. Lonergan; Elisabeth J. Huff-Lonergan